

Discharge Consent (068/12/3) Reporting

December 2017 to February 2018

Author – Dalradian Gold Ltd

> Date 30th March 2018

TABLE OF CONTENTS

1.0 Introduction	1
2.0 Summary of operations during the reporting period	1
3.0 Sampling locations, protocol and laboratories	1
4.0 Results	3
4.1 Quality Assurance/Quality Control	3
4.1.1 Chain of Custody and confirmation of parameter analysis	.3
4.1.2 Holding times	.3
4.1.3 Field Blanks	.3
4.1.4 Duplicate Samples	.4
4.1.5 Laboratory internal QA/QC	4
4.1.6 Summary	.5
4.2 Factual Presentation of Data	.5

Appendix A – Presentation of Water Quality Results

Appendix B – Laboratory Certificates

Appendix C – YSI MultiParameter Meter Calibration Certificate

1.0 INTRODUCTION

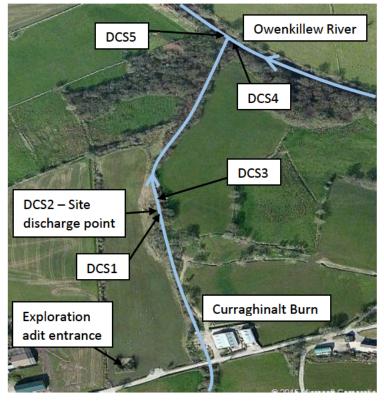
This report has been prepared by Dalradian Gold Ltd. (DGL) in response to Condition 1.1. of Discharge Consent 068/12/3, which requires quarterly water quality reporting. The consent relates to discharge of site drainage water (at Irish Grid Reference H 5707 8690) arising from the DGL advanced exploration project at Curraghinalt. The site is situated approximately 8 km to the east of the village of Gortin, County Tyrone, Northern Ireland, BT79 7SF.

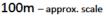
2.0 SUMMARY OF OPERATIONS DURING THE REPORTING PERIOD

DGL have progressed advanced exploration at the Curraghinalt site. The work has progressed under Planning Permission K/2014/0246/F, and is aimed at collecting information that will support a Feasibility Study and an Environmental Impact Assessment to allow for development of a full mine.

Water discharged via the consent during the reporting period has derived from natural groundwater drainage to the exploration adit, waters from underground exploration drilling, and runoff water from various components of the site that has resulted from incident rainfall. Following capture and management of these sources, treatment prior to discharge at the consent location has included passage through a settlement tank, oil interceptor, lamella clarifier (for further sediment removal), and a pH adjustment tank.

DGL informed the Northern Ireland Environment Agency (NIEA) of the intention to commence the site discharge on 3 December 2014. This document represents the 13th quarterly discharge consent report.


3.0 SAMPLING LOCATIONS, PROTOCOL AND LABORATORIES


Five surface water sample locations are required to be sampled monthly as part of the Discharge Consent. These have been listed below as Discharge Consent Sample 1 (DCS1) to Discharge Consent Sample 5 (DCS5) and are also presented on Figure 1.

- DCS1 Immediately upstream of the confluence of the site discharge point and Curraghinalt Burn;
- DCS2 Site discharge point;
- DCS3 5 m downstream of the confluence of the site discharge point and Curraghinalt Burn;
- DCS4 Immediately upstream of the confluence of Curraghinalt Burn and the Owenkillew River; and
- DCS5 5 m downstream of the confluence of the Curraghinalt Burn and the Owenkillew River.

DGL has also added 2 more samples as part of QA/QC. The sample ID's are:

- DCS6 a blank sample consisting of deionised water; and
- DCS7 a duplicate of any sample between DCS1 and DCS5.

Figure 1: Site map (Bing Maps) showing discharge consent sample locations

All surface water samples are collected according to protocols described in the DGL Surface Water Sampling Procedure¹. To help ensure quality results, care is taken not to disturb stream bed sediments upstream of the sampling point and prior to sampling. Samples are collected at all locations by a DGL Field Technician wearing a fresh pair of nitrile gloves and from the flowing stream of water to minimise any risks of contamination. All sample bottles are laboratory supplied and are filled to capacity at source.

In accordance with best practice, field filtration for dissolved parameters is undertaken on site using a syringe and attached 0.45 μ m filter, and these samples are associated with a nitric acid (HNO₃) preservative to thereafter stabilise dissolved metals in solution. All laboratory analytical services during the quarter, including supplementary Quality Assurance/Quality Control (QA/QC) testing, have been provided by Exova Jones Environmental Laboratory (Jones).

Samples are placed in a cooler with ice, secured with sample packaging and accompanied by a completed Chain of Custody (CoC) Form, and shipped directly to **secure accedited** for analysis. **Secure** are accredited by the United Kingdom Accreditation Service (UKAS) to 17025 standard, and UKAS monitor and externally audit the laboratory.

DGL have also been working to include the measurement of pH in the field at each sample location. Regular calibration of the instrument used is undertaken on site using both pH 4.01 and pH 7.01 buffer solutions and in accordance with DGL MultiParameter Meter Calibration Procedure². During readings,

¹ Dalradian Gold Ltd. 2013 & 2015. Surface Water Sampling Procedure.

² Dalradian Gold Ltd. 2013 & 2015. MultiParameter Meter Calibration Procedure.

the pH probe is fully immersed at all times in the flowing stream of water and up until stabilisation occurs³.

4.0 RESULTS

During this reporting period DGL have collected a total of 3 rounds of water samples from the discharge consent locations. This number of samples meets that required by the consent during the period. Sampling was undertaken on the 13th of December 2017, 10th of January 2018 and the 6th of February 2018.

QA/QC checks and factual reporting against the consent water quality thresholds for the discharge point are presented in the following sub-sections. Water quality results and thresholds are summarised in Appendix A, and all laboratory certificates are presented in Appendix B.

4.1 Quality Assurance/Quality Control

A number of QA/QC measures have been applied to water samples taken at all sites. A factory calibrated certificate for the YSI Professional Series Multiparameter probe used to measure pH in the field is provided in Appendix C.

4.1.1 Chain of Custody and confirmation of parameter analysis

A chain of custody (CoC) form was completed on each day of sampling. The CoC forms document possession of the samples from the time of sample collection to reception at the lab; provide primary instruction to the lab on the parameters to be analysed; and provide sample information relevant to the lab, such as sample name and sample date and time. Following each sampling event and prior to submission to the lab, the CoC was reviewed and checked for errors. In the events covered within the period there are no issues to report in this respect.

4.1.2 Holding times

In order to ensure holding times were not exceeded, DGL shipped samples directly to the laboratory. Certificates presented in Appendix B demonstrate that all samples were received by the next day after sampling. Testing is recorded on CoC forms to have been scheduled for a standard 10 day turnaround time on all occasions.

4.1.3 Field Blanks

A total of three field blanks have been collected during the reporting period to assess potential contamination due to the sampling environment (e.g., dust getting into the sample bottle). Analysis of field blanks was undertaken by the laboratory alongside the specified water chemical analysis. Field blank results include total ambient conditions during sampling, but can also potentially incorporate bias due to laboratory methods (e.g., low-level constituents remaining in analytical equipment from a prior highly contaminated sample from another site) that are assessed by laboratory method blanks. The field blanks incorporated deionised water which theoretically should return no measurable values throughout the parameters analysed (with the omission of pH) unless there has been a source of contamination during sampling.

All determinants in three blank samples were below laboratory detection limits (Appendix A).

³ Dalradian Gold Ltd. 2013 & 2015. MultiParameter Meter Sampling Procedure.

4.1.4 Duplicate Samples

Three duplicate samples were collected during the reporting period, and all from the discharge point (DCS2). Analysis of all duplicate samples was undertaken by Jones and therefore alongside the remaining batch.

The measure of the reproducibility or precision of the chemical analysis has been quantified by calculating the Relative Percentage Difference (RPD) between parameter concentrations on the split sample submitted as a blind duplicate. The RPD has been calculated as follows:

$$RPD\% = \frac{|S - D|}{\frac{1}{2}(S + D)} \ge 100$$

Where:

RPD = Relative Percentage Difference

S = Sample value of parameter; and

D = Duplicate value of parameter

Theoretically, duplicate samples should have identical chemical concentrations (i.e., RPD = 0). However, due to factors such as sample matrix heterogeneity, natural variations or variations due to sample collection, handling or analysis, a variation in chemical concentration may occur (i.e., RPD greater than 0).

It should be noted that the reproducibility of replicate analyses at concentrations near the method detection limit (MDL) can be poor, resulting in RPD values of greater than the desirable limits. Therefore, for duplicate concentrations greater than five times the detection limit, a relative percent difference value of $\pm 20\%$ is considered acceptable⁴. Given these considerations, for duplicate concentrations less than five times the detection limit, RPD has not been calculated.

An RPD value greater than the above project objectives suggests variability has been introduced through sample collection, sample handling, or sample analysis. Of the analysis undertaken dissolved iron on the 13th of December was found to be outside the acceptable RPD. However, concentrations are well below any consent limits as applicable. These discrepancies are considered to most likely be due to small variations in sampling and analytical procedure.

4.1.5 Laboratory internal QA/QC

report data only if the laboratory is confident that the results are a true reflection of the samples analysed, and data is only reported as accredited when all the requirements of their Quality System have been met. Any failure in the Quality System is fully investigated and documented as deviating samples on certificates issued. If samples are received in a condition inappropriate to the requested analyses, for example if they are dispatched in inappropriate containers or at a temperature not commensurate with the requested analysis, any test results that may be compromised will be highlighted in a deviating samples report.

On all laboratory certificates returned, all samples sent for analysis were scheduled upon receipt. There were no deviating samples in this quarter.

⁴ Zeiner, S.T. 1994. Realistic Criteria for the Evaluation of Field Duplicate Field Results. Proceedings of Superfund XV, November 29-December 1, 1994. Sheraton Washington Hotel, Washington, D.C.

4.1.6 Summary

As detailed above, there are no major QA/QC concerns regarding the dataset presented. Duplicate and blank samples collected also indicate a high level of data quality. There were no detections in field blanks that resulted in no apparent bias in the water quality results.

4.2 Factual Presentation of Data

All water quality results are presented in summary for each location in Appendix A. This includes a comparison of concentrations from the discharge point location (DCS2) against specific threshold values detailed within the consent.

During the reporting period, all three sample results from DCS2 are below the threshold values presented within the consent for all parameters.

Water quality obtained from the Curraghinalt Burn during the period can be summarised as follows:

- Total suspended solids varied from below detection (<10 mg/L) to 14 mg/L (at the downstream location);
- All BOD concentrations were below detection (<1 mg/L) in all cases;
- Laboratory measured pH varies between a minimum of 6.87 pH units (recorded at the upstream location) and a maximum of 7.91 pH units (recorded at the downstream location);
- Dissolved zinc concentrations varied between a minimum concentration of 2.9 µg/L found at the upstream location and 16.7 µg/L found at the downstream location;
- Dissolved arsenic concentration ranged from below detection at <0.9 μg/L to 1.6 μg/L;
- Dissolved lead concentrations were below detection at <0.4 μg/L (at both the downstream and upstream locations);
- Oil or grease has not been visible at the sample locations;
- The maximum dissolved iron concentration has been determined at 0.7136 mg/L at the upstream location; and
- The maximum total hardness has been recorded as 85 mg/L at the downstream location.

Water quality obtained from the Owenkillew River during the period can be summarised as follows:

- Total suspended solids varied between below detection (<10 mg/L) in both the upstream and downstream locations and 25 mg/L in the upstream location;
- All BOD concentrations were below detection (<1 mg/L) in all cases;
- Laboratory measured pH varies between a minimum of 4.24 pH units (recorded at the downstream location) and a maximum of 7.37 pH units (recorded at the upstream location);
- Oil or grease has not been visible at the sample locations;
- The maximum dissolved iron concentration has been determined at 0.6217 mg/L at the downstream location; and
- Dissolved zinc concentrations varied from below detection (<1.5 μg/L) to 7.3 μg/L in the upstream location;
- The maximum total hardness has been recorded as 32 mg/L at the downstream location.

Appendix A

Presentation of Water Quality Results

Appendix A

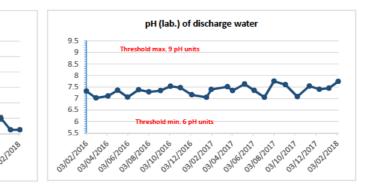
DCS2 - Discharge Point

Parameter	Discharge Consent Threshold	Detection limit (typical)	27/11/2014	16/12/2014	4 18/12/2014	14/01/2015	04/02/2015	Duplicate/DCS7	11/02/2015	Duplicate/DCS7	Duplicate	23/03/2015	26/03/2015	Duplicate	23/04/2015	Duplicate	28/05/2015	28/05/2015
Total Suspended Solids	50	10	3	11	18	22	6	<3	13	11	8	3	27	31	7	10	23	36
Biochemical Oxygen Demand	10	1	<1	<1	<1	1.58	1.76	1 61	1.03	<1	<2	<2	1.23	<2	1.04	<2	1.71 [#]	1.49 [#]
рН	>6 & <9	-	7.38	7.47	7.08	7.18	7.34 (7.00)	6.92	7.5 (7.48)	7.68	7.8	7.7	7.83 (8.54)	7.8	7 83	7.9	8.29	8.27
Total zinc ⁴	33.8	3	<18	<18	30	30	<18	<18	<18	<18	11.47	10.21	<18	30.07	<18	<3.73	17.8	14.6
Dissolved zinc	490	1.5																
Dissolved mercury ⁴	1.7	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0 2	<0.1	<0.2	<0.1	<0.04	<0.01	<0.01
Dissolved cadmium ⁴	0.7	0.03	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0 6	<0.09	<0.09	<0.6	<0.09	<0.6	<0.05	<0.1	<0.1
Dissolved iron ⁴	3.9	0.0047	<0.23	<0.23	<0.23	<0.23	<0.23	0.34	<0.23	<0.23	0.04908	0.03045	<0 23	0.8087	<0.23	0.18	<0.019	<0.019
Dissolved copper ⁴	16.2	3	12	10	<9	<9	<9	<9	<9	<9	9.065	7.101	10	2.202	<9	4.765	9.39	8.77
Dissolved chromium ²	8.1	0.2	<2	<2	2	7	2	<2	<2	<2	<0.68	<0.68	<2	<0.68	<2	<0.28	2.13	2.01
Chromium VI	N/A	2	<5	<5	<5	9	<5	<5	<5	<5			<5		<5		<30	<30
Chromium III	N/A	2	<30	<30	<30	<30	<30	<30	<30	<30			<30		<30		<30	<30
Dissolved nickel ³	20	0.2	<3	<3	6	14	10	<3	14	11	12.01	6.544	5	0.833	7	5.578	5.22	5.09
Dissolved arsenic ¹	50	0.9	1	<1	<1	3	4.8	1.1	5.1	4.3	6 23	2.971	79	1.929	2.5	2.214	16	13.7
Dissolved lead ³	7.2	0.4	<6	<6	<6	<6	<6	<6	<6	<6	<0.173	<0.173	<6	<0.173	<6	<0.12	<0.02	<0.02
Total hardness as CaCO3	N/A	1	123	137	132	135	137	24.1	150	146	139	136	106	114	147	159	140	148
Visible oil or grease	N/A	N/A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes:

pH values presented in pH units. Values in brackets are field pH measurements. Total Suspended Solids, Biochemical Oxygen Demand, Total hardness & Dissolved iron concentrations are presented in mg/L, all other parameters are in µg/L.

^{1,2&3} Discharge Consent Threshold from The Water Framework Directive (Priority Substances and Classification) Regulations (Northern Ireland) 2011


¹ Annual mean value presented for 'Good Standard for rivers and freshwater lakes'

² Annual mean environmental standard for chromium III (4.7µg/L) plus annual mean environmental standard for chromium VI (3.4µg/L) presented for 'Good Standard for rivers and freshwater lakes'

³ Annual mean environmental standard (AA-EQS) value presented for priority substance and its compounds for all rivers and lakes

⁴ Department Specific

[#] BOD over diluted, therefore result indicative only ^A Container with headspace Exceedance of threshold Duplicate sample Total Suspended Solids in discharge water (mg/L) Biochemical Oxygen Demand in discharge water (mg/L) 60 12 eshold max. 50 mg/L 50 Threshold max. 10 mg/L 10 40 8 30 6 20 10 2 03/02/2011 03/12/201 SIG1056 SIG91056 SIG91056 SIG95 SIG95 SIG9105 SIG91051 SIG91051 SIG91051 SIG91051 SIG91051 SIG91055 03/08/24 03/10/20

Notes:

Half detection limit used for graphing when parameter less than detect Error bars of 20% to reflect limit of acceptable duplicate reproducibility

02/06/2015	30/07/2015	5 04/08/2015	Duplicate	02/09/2015	28/09/2015	Duplicate	01/10/2015	22/10/2015	Duplicate	05/11/2015	Duplicate	09/12/2015	Duplicate	06/01/2016	Duplicate	03/02/2016	Duplicate	03/02/2016 Retest	Duplicate Retest	02/03/2016	Duplicate	06/04/2016	Duplicate	04/05/2016	Duplicate
39	<10	14	23	11	<10	12	12	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	-	<10	<10	<10	<10	<10	<10
<1	<1	1	8	3	3	3	2	2	1	1	<1	<1	1	<1	<1	<1	<1	-	-	<1	3	1	1	2	2
7.82	7.98	7.69 (8.41)	7.7	8.09	7.74	7.73	8.96	7 35	7.14	7.85 (7.53)	8.06	7.76 (7 28)	8.07	7.58 (7.05)	7.47	7.32 (7.10)	7.27	-	-	7.08 (7.02)	7.09	7.27 (7.11)	7.42	7.36 (7.07)	7.39
<18	4	6	14.59	13	28	31	7	12	10	5	5	13	12	9	9	33	35	30	30	13	11	19	18.6	<3	<3
<0.1	<0.01	<0.01	1.051	<0.01	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	0.6	<0.5	<0.5	<0.5	<0.5	<0.5
<0.6	0.13	0.06	0.121	0.36	0.2	0.21	0.25	0.16	0 21	0.24	0.14	0.43	0.19	0.25	0.12	<0.03	<0.03	-	-	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
<0.23	<0.0047	0.1384	0.9932	0.0082	0.5821	0.5538	0 3261	0.6625	0.6613	0.2782	0.2208	0.0352	0.0075	0.1227	0 2064	0.1852	0.2213	-	-	0.4409	0.3247	0.4914	0.4934	0.5691	0.596
<9	<3	<3	13.99	<0.3	5	5	4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	-	-	<3	<3	<3	<3	<3	<3
<2	<0.2	<0.2	<0.68	0.6	<0.2	<0.2	0.2	<0.2	<0.2	<0 2	<0.2	1.4	<0.2	0.3	<0.2	0.7	<0.2	-	-	0.5	0.3	<0.2	<0.2	<0.2	<0.2
<5	<2	<2		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	-	-	<2	<2	<2	<2	<2	<2
<30	<2	<2		<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	-	-	<2	<2	<2	<2	<2	<2
5	6.5	7	9.321	5.3	5	4.9	2.7	3.3	3.7	5.5	5.2	7.4	5.8	5.5	5.1	5.3	4.7	-	-	6.3	4.4	3	3	4.5	3.2
7.7	6.7	6.5	8.64	4.2	7.5	6.5	4.7	3.5	18	3 2	3.9	0.9	2.6	6.7	5.1	<0.9	<0.9	-	-	2.4	<0.9	<0.9	<0.9	2.5	6
<6	2.6	2.5	0.37	4.7	4.4	4.5	<0.4	1.9	18	36	2.8	6.5	3.8	3.3	4	<0.4	<0.4	-	-	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
141	179	175	183	163	157	157	93	167	168	197	198	200	202	208	207	195	193	-	-	171	170	189	191	190	212
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-

02/06/2016	Duplicate	04/07/2016	Duplicate	03/08/2016	Duplicate	06/09/2016	Duplicate	05/10/2016	Duplicate	03/11/2016	Duplicate	06/12/2016	Duplicate	18/01/2017	Duplicate	01/02/2017	Duplicate	20/03/2017	Duplicate	04/04/2017	Duplicate	09/05/2017	Duplicate	06/06/2017	Duplicate	06/07/2017	Duplicate
<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	11
<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1	2	<1	<1	<1	<1	<1	<1	<1	3	3	2	2	<1	<1	3	3
7.06 (7.35)	7.07	7.38 (7.08)	7.17	7.29 (6.95)	7.19	7.34 (7.18)	7.37	7.53 (6.81)	7.06	7.47 (6.91)	7 29	7.16 (6.88)	7	7.05 (7.00)	6.68	7 39 (7.18)	7.53	7.51 (7.00)	7.5	7.34 (7 22)	7.36	7 63 (7.27)	7 35	7.35 (7.27)	7.32	7.05 (6 95)	7.27
5	6	3	3	3	3	<3	<3	7	6	7	6	<3	<3	25	26	29	28	29	32	12	11	3	3	10	10	2.6	2.7
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.5	<0.5	<0.5	<0.5	<0.01	<0.01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<1
< 0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
0.4472	0.4561	0.9222	0.9363	0.4984	0.5022	0.4894	0.4811	0.3381	0 3371	0.5496	0.6054	0.4327	0.44	0.1683	0.1642	0.1571	0.1609	<0.0047	<0.0047	0.7468	0.7717	0.4589	0.4493	0.257	0.2594	1.981	1.87
<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
<0.2	<0.2	<0.2	03	<0.2	0.3	<0.2	<0.2	0.5	<0.2	<0.2	<0.2	0.3	<0.2	<0.2	0.3	0.2	<0.2	<0 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0 2	<0.2	0.9	<0.2
<2	<2	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	NA	NA	<6	<6	<6	<6	NA	NA
<2	<2	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6
4.7	4.9	3.3	4.7	4.6	4	3.3	3.5	5.6	5.2	5.4	53	4.2	3.2	5.9	5.7	8	7.6	4.4	3.9	3.8	4	3.2	2.7	2	2.9	1.7	1.5
2.6	2.5	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	4	56	3.9	4.3	3.3	2	2.6	2.2	<0 9	<0.9	1.5	2.1	<0.9	2.5	2.1	<0.9	5.8	4.3
<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	0.5	<0.4
223	215	194	195	179	176	186	186	176	177	192	200	197	190	284	284	196	199	191	188	186	186	179	183	173	172	200	204
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

03/08/2017	Duplicate	05/09/2017	Duplicate	10/10/2017	Duplicate	14/11/2017	Duplicate	13/12/2017	Duplicate	10/01/2018	Duplicate	06/02/2018	Duplicate
<10	<10	15	14	<10	<10	<10	<10	10	<10	<10	<10	<10	<10
<1	<1	2	<1	<1	<1	<1	<1	2	4	<1	<1	<1	2
7.75 (7.26)	7.7	7 6 (6.50)	7.67	7.08 (6.5)	6.85	7.54 (7.51)	7.33	7.4 (7.54)	7.56	7.45 (7.64)	7.09	7.74 (7.78)	7.7
NA	NA	9	10										
				3.9	2.9	2.4	2.2	25.0	23.7	49	48	22.8	22.9
<1	<1	<0.5	<0.5	<0.01	<0.01	<0.01	<0.01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
0.407	0.3984	0.3153	0.1476	1.798	1.865	0.3139	0.2942	0.1678	0.2195	0.3651	0.3601	0.1836	0.1862
<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
<0.2	<0.2	2.2	<0.2	0.3	0.3	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.9
NA	NA	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6
<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6
1.8	2.1	2	3 2	2.7	2.7	4.3	3.5	4.8	4.5	3.9	4.2	5.1	4.9
<0.9	<0.9	1.1	<0.9	4.1	3.5	1.2	3.4	1.3	19	<0.9	3.2	<0.9	<0.9
<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
175	167	195	180	203	208	179	178	208	207	194	193	188	184
-	-	-	-	-	-	-	-	-	-	-	-	-	-

Discharge Point

DCS1 - Curraghinalt Burn upstream

Parameter	Detection limit (typical)	27/11/2014	4 16/12/2014	18/12/201	5 14/01/2015	04/02/2015	11/02/2015	Duplicate	26/03/2015	23/04/2015	21/05/2015	28/05/2015	02/06/2015	28/07/2015	30/07/2015	04/08/2015	02/09/2015	01/10/2015	22/10/2015	05/11/2015	09/12/2015
Total Suspended Solids	10	<3	<3	<3	9	<3	<3	<2	18	<3	3	5	4	9	<10	<10	32	<10	<10	17	<10
Biochemical Oxygen Demand	1	<1	<1	<1	1.87	1 39	<1	<2	1.23	<1	1.29	<1	<1	1.49 ^{#∆}	1	2	1	2	<1	2	2
рН	-	6.7	6.75	7	6.9	7.23 (6.73)	6.8 (7 33)	8.2	6.81 (7.05)	6.99	7.19	7.7	6.57	5.94 (6.49)	6.85	5.74 (8.36)	7.46	6.75	7.34	7.74 (7.54)	6.79 (6.49)
Total zinc	3	<18	<18	<18	20	<18	<18	5.394	<18	<18	<18	7.49	<18	14	8	7	8	7	6	28	4
Dissolved zinc	1.5																				
Dissolved mercury	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.01	<0.1	0.51	<0.01	<0.01	<0.01	<0.5	<0.5	<0.5	<0.5
Dissolved cadmium	0.03	<0 6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.09	<0.6	<0.6	<0.6	<0.1	<0.6	6.9	< 0.03	<0.03	< 0.03	<0.03	<0.03	0.09	0.03
Dissolved iron	0.0047	2.07	0.52	0.67	0 39	0.36	0.36	0 6633	<0.23	1.34	1.34	1.47	0.52	1.2	2.569	2.046	6.269	6.646	5.39	4.41	1.131
Dissolved copper	3	<9	<9	<9	<9	<9	<9	7.207	<9	<9	<9	2.56	<9	9.6	<3	<3	4	<3	<3	4	<3
Dissolved chromium	0 2	<2	<2	<2	<2	<2	<2	<0.68	<2	<2	<2	0.956	<2	4.7	<0 2	0.6	1.2	0.4	<0.2	0.3	<0.2
Chromium VI	2	<5	<5	<5	<5	<5	<5		<5	<5	<5	<30	<5	<20	<2	<2	<2	<2	<2	<2	<2
Chromium III	2	<30	<30	<30	<30	<30	<30		<30	<30	<30	<30	<30	<20	<2	<2	<2	<2	<2	<2	<2
Dissolved nickel	0 2	<3	<3	<3	<3	<3	<3	0.702	<3	<3	<3	0.913	<3	3.1	0.7	1	1.6	1.3	0.3	0.7	<0.2
Dissolved arsenic	0 9	2.4	<1	<1	<1	1.3	<1	1.197	2	3.2	2.2	3.69	1.2	2.8	2.5	2.6	4.6	5.9	2.8	<0.9	12
Dissolved lead	0.4	<6	<6	<6	<6	<6	<6	0.284	<6	<6	<6	0.315	<6	2.1	<0.4	<0.4	2.7	<0.4	<0.4	1.2	1.1
Total hardness as CaCO3	1	21.7	16.2	21.1	30.1	24 2	19.7	19	13.4	33.1	17.6	29.4	9.98	<15	229	12	23	30	24	37	7
Visible oil or grease	N/A	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-

Notes:

pH values presented in pH units. Values in brackets are field pH measurements. Total Suspended Solids, Biochemical Oxygen Demand, Total hardness & Dissolved iron concentrations are presented in mg/L, all other parameters are in µg/L.

 $^{\#}$ BOD over diluted, therefore result indicative only $$^{\Delta}$$ Container with headspace

DCS3 - Curraghinalt Burn downstream

Parameter	Detection limit (typical)	27/11/2014	16/12/2014	18/12/2014	14/01/201	5 04/02/2015	11/02/2015	26/03/2015	23/04/2015	21/05/2015	28/05/2015	02/06/2015	Duplicate	28/07/2015	30/07/2015	04/08/2015	02/09/2015	01/10/2015	22/10/2015	05/11/2015	09/12/2015
Total Suspended Solids	10	3	8	4	5	3	5	28	72	<3	18	9	3	16	<10	<10	<10	<10	<10	10	<10
Biochemical Oxygen Demand	1	1.08	<1	<1	1.65	1 91	<1	1.31	<1	1 25	1.22	<1	<2	1.42 ^{#Δ}	1	2	1	1	<1	2	3
рН	-	7.19	7.46	6.95	7.44	7.16 (6.93)	7.45 (7.2)	6 91 (7.31)	7.82	7.88	7.76	6.81	7.4	6.02 (6.28)	7.12	5.95 (6.40)	7.12	6.45	7.46	7.73 (7.5)	7.45 (6.5)
Total zinc	3	<18	<18	<18	20	<18	<18	<18	<18	<18	11.2	<18	36.51	13	9	7	9	7	8	17	4
Dissolved zinc	1.5																				
Dissolved mercury	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.01	<0.1	<0.2	<0.5	<0.01	<0.01	<0.01	0.6	<0.5	<0.5	<0.5
Dissolved cadmium	0.03	<0 6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.1	<0.6	<0.09	0.45	<0.03	<0.03	<0.03	<0.03	<0.03	0.07	<0.03
Dissolved iron	0.0047	1.78	0.54	0.65	0 38	0.25	0.25	0.24	0.8	1.13	1.03	0.52	1.485	1.2	2.634	1.843	3.455	6.574	3.424	2 834	1.016
Dissolved copper	3	<9	<9	<9	<9	<9	<9	<9	<9	<9	5.58	<9	19.83	4.2	3	<3	3	<3	<3	7	<3
Dissolved chromium	0 2	<2	<2	<2	6	<2	<2	<2	<2	<2	1.8	<2	1.017	4.6	<0 2	<0.2	<0.2	<0.2	<0.2	0.9	<0.2
Chromium VI	2	<5	<5	<5	8	<5	<5	<5	<5	<5	<30	<5		<20	<2	<2	<2	<2	<2	<2	<2
Chromium III	2	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30		<20	<2	<2	<2	<2	<2	<2	<2
Dissolved nickel	0 2	<3	<3	<3	<3	<3	4	<3	<3	<3	2.12	<3	6 816	4.6	0.7	0.4	2.4	1.4	2.3	2.5	<0.2
Dissolved arsenic	0 9	2.1	<1	<1	<1	2	1.3	2.7	5.3	8.3	7.7	1.5	7.069	1.3	<0 9	2	3.4	6.5	3.9	3.6	28
Dissolved lead	0.4	<6	<6	<6	<6	<6	<6	<6	<6	<6	0.187	<6	0 381	<1	1	0.7	1.2	0.9	<0.4	2.8	<0.4
Total hardness as CaCO3	1	35.5	27.5	21	34.5	41.4	49.4	13.7	71.4	36.6	65.1	10 8	25	<15	21	21	68	31	84	100	22
Visible oil or grease	N/A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes:

pH values presented in pH units. Values in brackets are field pH measurements. Total Suspended Solids, Biochemical Oxygen Demand, Total hardness & Dissolved iron concentrations are presented in mg/L, all other parameters are in µg/L.

[#] BOD over diluted, therefore result indicative only ^Δ Container with headspace

06/01/2015	03/02/2015	02/03/2016	06/04/2016	04/05/2016	02/06/2016	04/07/2016	03/08/2016	06/09/2016	05/10/2016	03/11/2016	06/12/2016	18/01/2017	01/02/2017	20/03/2017	04/04/2017	09/05/2017	06/06/2017	06/07/2017	03/08/2017	05/09/2017	10/10/2017	14/11/2017	13/12/2017	10/01/2018	06/02/2018
<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	19	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1	<1	2	2	2	<1	<1	2	2	2	1	1	<1	9	<1	2	1	<1	1	<1	<1	<1	<1	<1	<1	<1
7.59 (6.64)	6.09 (4.82)	7.18 (6.87)	6.70 (6.71)	6.94 (7.5)	7.21 (7.78)	7.04 (7.34)	6.51 (6.99)	6.5 (7.52)	7.76 (7.33)	7.81 (7.42)	6.55 (7 36)	6.85 (7.33)	6.57 (6.66)	6.14 (6.72)	7.15 (6.8)	8.8 (7.62)	6.55 (6.71)	6.49 (7.49)	6.28 (5.28)	6.42 (6.81)	6.05 (6.63)	7.33 (7.32)	6.9 (7 85)	6.87 (7.52)	7.67 (7.9)
4	20	8	4	<3	<3	5	10	7	7	5	3	4	5	5	7	<3	5	3.8	NA	8					
																					73	6.1	2.9	6.6	8.5
<0.5	<0.5	<0.5	<0.5	<0.5	< 0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.5	<0.5	<0.01	<0.5	<0.5	<0.5	<0.5	<1	<1	<0.5	<0.01	< 0.01	<0.5	<0.5	<0.5
< 0.03	< 0.03	< 0.03	<0.03	<0.03	< 0.03	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	< 0.03	< 0.03	<0.03	<0.03	<0.03
1.276	0 3198	0.7347	0.7676	1.861	3.229	1.876	3.405	3.162	8.689	7.586	3.364	0.6952	0.7231	0.7234	1.113	1.456	1.272	2.382	2.006	1 828	1.448	1.393	0.5909	0.7136	0.5669
<3	<3	<3	<3	<3	<3	<3	<3	<3	4	6	<3	<3	<3	<3	<3	<3	<3	<3	<3	6	3	<3	<3	<3	<3
<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.5	<0.2	0.5	0.2	0.7	<0.2	<0 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
<2	<2	<2	<2	<2	<2	<6	<6	<6	<6	<6	<6	<6	<6	<6	NA	<6	<6	NA	NA	<6	<6	<6	<6	<6	<6
<2	<2	<2	<2	<2	<2	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6
1.2	0.4	0.3	<0.2	<0.2	0.3	0.4	0.7	0.2	2.2	1.5	0.9	0.5	0.6	0.3	06	0.4	<0.2	<0.2	<0.2	0.9	1.1	<0.2	<0.2	0.5	0.2
1.8	<0.9	<0.9	<0.9	2.5	2.9	4	<0.9	1.1	7.2	10.5	5.4	0.9	<0.9	<0.9	<0 9	3.6	2.1	1.7	<0.9	1.7	<0.9	2	1	<0.9	<0.9
1.2	<0.4	0.6	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	0.9	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
12	18	16	9	21	33	16	16	14	27	31	27	18	13	10	127	38	10	17	8	14	11	13	9	10	22
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

06/01/2015	03/02/2015	02/03/2016	06/04/2016	04/05/2016	02/06/2016	04/07/2016	03/08/2016	06/09/2016	05/10/2016	03/11/2016	06/12/2016	18/01/2017	01/02/2017	20/03/2017	04/04/2017	09/05/2017	06/06/2017	06/07/2017	03/08/2017	05/09/2017	10/10/2017	14/11/2017	13/12/2017	10/01/2018	06/02/2018
<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	25	<10	<10	<10	<10	15	<10	<10	14	<10	<10
<1	<1	2	2	1	1	1	2	1	2	<1	1	<1	<1	<1	2	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
7.47 (6.68)	7 35 (5.77)	6.86 (7.14)	7.12 (6.77)	7.4 (7 25)	7.06 (7.47)	6.74 (7.20)	6 95 (7.12)	7.02 (7.13)	7.52 (7.12)	7.62 (6.97)	7.45 (6 91)	7.32 (6.74)	7.48 (6.71)	6.93 (7.06)	7.41 (7.16)	7.76 (7.39)	7.14 (7.09)	7.37 (7.49)	6.41 (6.9)	7 36 (6.63)	7.19 (6.29)	6.37 (7.01)	7.3	7.91 (7.33)	7.66 (7.79)
6	18	8	4	<3	5	5	6	6	7	7	6	8	10	5	9	3	6	4.6	NA	10					
																					7.4	6.3	3.1	15.8	16.7
<0.5	<0.5	<0.5	<0.5	<0.5	<0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.5	<0.5	<0.01	<0.5	<0.5	<0.5	<0.5	<1	<1	<0.5	<0.01	< 0.01	<0.5	<0.5	<0.5
< 0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	< 0.03	< 0.03	< 0.03	<0.03	< 0.03	< 0.03	<0.03	< 0.03	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	< 0.03	<0.03	<0.03	<0.03
0.993	0.305	0.508	0.7319	1.043	1.172	1.901	3.003	3.11	3.905	3.272	1.987	0.5208	0.7368	0.7424	0.904	0.5302	1.058	2.146	1.896	1 281	1.422	1.352	0.5759	0.6817	0.3665
<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	4	3	<3	<3	<3	<3
<0.2	<0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0 2	<0.2	0.4	0.3	1.3	<0.2	<0 2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
<2	<2	<2	<2	<2	<2	<6	<6	<6	<6	<6	<6	<6	<6	<6	NA	<6	<6	NA	NA	<6	<6	<6	<6	<6	<6
<2	<2	<2	<2	<2	<2	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6
1.1	0.7	1	<0.2	1.8	3	<0.2	1	0.4	3.7	3.9	2.2	1.6	1.2	<0.2	09	1.4	0.4	<0.2	<0.2	1.9	09	0.4	<0.2	1.1	2.4
5.3	1.3	<0.9	<0.9	2.1	1.6	4.2	1.4	3.8	1.3	7.4	4.2	<0.9	2.4	<0.9	29	<0.9	1.5	6.6	1.7	1.7	29	<0.9	<0.9	1.6	<0.9
0.8	2	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
57	33	41	12	102	157	26	35	35	110	124	93	71	23	12	49	128	41	39	16	56	19	16	15	40	85
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Appendix A

DCS4 - Owenkillew River upstream

Parameter	Detection limit (typical)	27/11/201	4 16/12/2014	18/12/201	4 14/01/2015	04/02/2015	11/02/2015	26/03/2015	Duplicate	23/04/2015	Duplicate	21/05/2015	02/06/2015	07/07/2015	28/07/2015	30/07/2015	04/08/2015	Duplicate	02/09/2019	01/10/2015	22/10/201	5 05/11/2015	09/12/2015
Total Suspended Solids	10	<3	<3	6	<3	<3	<3	42	43	<3	<2	6	9	13	9	<10	12	3	<10	<10	<10	<10	11
Biochemical Oxygen Demand	1	<1	<1	<1	1.47	1.29	<1	2.57	8	<1	<2	1.95	1.28	2.47	1.95	1	1	<2	2	1	2	2	1
рН	-	6.84	7 07	6.68	6.77	6.7 (5.92)	7.06 (8.15)	6.9 (8.54)	7.7	7.93	7.2	7 23	6.79	(7.36)	6.1 (6.50)	6.68	7 28 (9.90)	7.4	7.79	6.45	7.46	7.65 (7.14)	6 83 (6.65)
Total zinc	3	<18	<18	<18	<18	<18	<18	<18	9.716	<18	<0.63	<18	<18	6.7	9.6	6	6	10.31	4	3	<3	3	5
Dissolved zinc	1.5																						
Dissolved mercury	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	< 0.03	<0.1	<0.1	<0.5	<0 5	0 04	<0.01	<0.2	< 0.01	0.6	<0 5	<0.5	<0 5
Dissolved cadmium	0.03	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.09	<0.6	<0.01	<0.6	<0.6	<0.08	0.6	< 0.03	< 0.03	<0.09	0.05	0.14	< 0.03	0.08	0.2
Dissolved iron	0.0047	1.05	0.5	0.45	0.43	0.4	0 36	0 25	0 2771	0.56	0.806	0 53	0.36	0.56	0.78	1.146	2.459	1.482	1 806	1 503	0.9033	1 269	0.7594
Dissolved copper	3	<9	<9	<9	<9	<9	<9	<9	20.09	<9	0.445	<9	<9	1.1	3.2	<3	<3	11.24	<3	<3	<3	<3	<3
Dissolved chromium	0.2	<2	<2	<2	<2	<2	<2	<2	<0.68	<2	<0.58	<2	<2	<1	5.8	<0.2	<0 2	<0.68	1	0.6	<0 2	<0.2	<0 2
Chromium VI	2	<5	<5	<5	<5	<5	<5	<5		<5		<5	<5	<20	<20	<2	<2		<2	<2	<2	<2	<2
Chromium III	2	<30	<30	<30	<30	<30	<30	<30		<30		<30	<30	<20	<20	<2	<2		<2	<2	<2	<2	<2
Dissolved nickel	0.2	<3	57	<3	<3	<3	<3	4	6.45	<3	0.569	<3	<3	<1	6.3	0.4	0.7	1 513	1.3	0.6	0.4	0.7	<0 2
Dissolved arsenic	0.9	<1	<1	<1	<1	<1	<1	4.8	5.032	1.5	1.399	1.4	1.1	<1	1.2	2.4	2.4	3.454	2.2	2.8	1.6	<0.9	2.7
Dissolved lead	0.4	<6	<6	<6	<6	<6	<6	<6	0.543	<6	<0.02	<6	<6	<1	<1	2.2	0.5	0 573	4	<0.4	<0.4	1.9	<0.4
Total hardness as CaCO3	1	28.8	24.3	19.1	25.1	31	27.9	17.6	21	37 5	38	23.7	16.2	30	<15	25	23	22	32	41	29	38	16
Visible oil or grease	N/A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

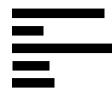
Notes:

pH values presented in pH units. Values in brackets are field pH measurements. Total Suspended Solids, Biochemical Oxygen Demand, Total hardness & Dissolved iron concentrations are presented in mg/L, all other parameters are in µg/L. # BOD over diluted, therefore result indicative only
Container with headspace

DCS5 - Owenkillew River downstream

Parameter	Detection limit (typical)	27/11/2014	16/12/2014	4 18/12/2014	4 14/01/201	5 04/02/2019	5 11/02/2015	23/03/2015	26/03/2015	23/04/2015	21/05/2015	Duplicate	02/06/201	5 07/07/2015	28/07/2015	30/07/201	5 04/08/2015	02/09/2015	01/10/201	5 22/10/201	5 05/11/201	5 09/12/2019	5 06/01/2015
Total Suspended Solids	10	<3	<3	8	<3	<3	<3	5	35	<3	<3	2	<3	14	12	<10	<10	<10	<10	<10	<10	<10	<10
Biochemical Oxygen Demand	1	<1	<1	<1	1.61 [#]	1.37	<1	<2	2.59	<1	1.17	<2	1.1	2.01	2.04 ^{#∆}	1	2	1	1	<1	1	2	1
pH	-	7.04	7.15	6.61	6.76	6.66 (5.54)	7.03 (7.45)	7.5	69 (6.77)	7.71	6.94	7.5	6.88	7.23 (7.41)	6.2 (6.96)	6 88	6 51 (7.41)	6.51	7.91	7.12	7.49 (7.11)	7.55 (6.66)	7 31 (6.49)
Total zinc	3	<18	<18	<18	<18	<18	<18	11.69	20	<18	<18	4.396	<18	8.8	11	7	5	5	<3	4	4	5	5
Dissolved zinc	1.5																						
Dissolved mercury	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.2	<0.1	<0.5	<0 5	0 05	0.03	0.01	<0.5	<0.5	<0 5	<0.5	<0 5
Dissolved cadmium	0.03	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.09	<0.6	<0.6	<0.6	<0.09	<0.6	<0.08	0.5	< 0.03	< 0.03	0.19	< 0.03	0.2	0.14	0.11	< 0.03
Dissolved iron	0.0047	0.98	0.5	0.42	0.43	0.37	0 39	0.6379	0.25	0.58	0.56	0.5218	0.38	0.63	0.83	1 241	2.749	1 835	1 938	1 312	1.37	0.7792	0.7899
Dissolved copper	3	<9	<9	<9	<9	<9	<9	0.322	<9	<9	<9	2.819	<9	<1	3.2	<3	<3	<3	<3	<3	<3	<3	<3
Dissolved chromium	0.2	<2	<2	<2	<2	<2	<2	<0.68	<2	<2	<2	<0.68	<2	<1	6.5	<0.2	0.3	1	<0.2	<0.2	03	<0.2	0.5
Chromium VI	2	<5	<5	<5	8	<5	<5		<5	<5	<5		<5	<20	<20	<2	<2	<2	<2	<2	<2	<2	<2
Chromium III	2	<30	<30	<30	<30	<30	<30		<30	<30	<30		<30	<20	<20	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved nickel	0.2	<3	<3	<3	<3	<3	<3	0.649	<3	<3	<3	0.997	<3	<1	7.1	0.5	0.8	1.4	0.5	0.6	0 9	0.5	1.1
Dissolved arsenic	0.9	<1	<1	<1	<1	1.2	<1	1.158	5	1.5	1.3	1.183	1.1	<1	1.2	2.4	5.4	<0.9	1.8	1.7	<0 9	<0.9	<0 9
Dissolved lead	0.4	<6	<6	<6	<6	<6	<6	<0.173	<6	<6	<6	< 0.173	<6	<1	<1	2.4	<0.4	2.2	<0.4	2.1	<0.4	<0.4	<0.4
Total hardness as CaCO3	1	29.3	23.8	18 2	25.3	31	27.1	35	17.2	41.6	23	25	16.3	31	<15	27	21	36	43	30	41	16	18
Visible oil or grease	N/A	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-

Notes:


pH values presented in pH units. Values in brackets are field pH measurements. Total Suspended Solids, Biochemical Oxygen Demand, Total hardness & Dissolved iron concentrations are presented in mg/L, all other parameters are in µg/L.

[#] BOD over diluted, therefore result indicative only ^A Container with headspace

6/01/2015	03/02/2015	02/03/2016	06/04/2016	04/05/2016	02/06/2016	04/07/2016	03/08/2016	06/09/2016	05/10/2016	03/11/2016	06/12/2016	5 18/01/2017	01/02/2017	20/03/2017	04/04/2017	09/05/2017	06/06/2017	06/07/2017	03/08/2017	05/09/2017	10/10/2017	7 14/11/2017	13/12/2017	10/01/2018	06/02/20
	<10		10		<10	<10		<10	<10	<10	<10		<10	10	<10	<10	<10	10		<10	<10	<10	25	<10	
<10	<10	<10	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	10	<10	<10	<10	10	<10	<10	<10	<10	25	<10	<10
1	1	2	2	1	1	<1	1	1	<1	1	2	1	1	<1	2	1	1	2	<1	<1	<1	<1	<1	<1	<1
7.1 (6.16)	7.08 (6.24)	7.19 (6.29)	7.2 (7.19)	7.08 (7.58)	7.23 (7.89)	6.74 (7.27)	7.08 (7.25)	7.07 (7.25)	7.61 (7.07)	7.73 (7.21)	7 59 (7.20)	7.39 (6 52)	7 38 (6.71)	6.69 (7 06)	7 34 (7.19)	7.3 (7.59)	7 22 (6.84)	7.14 (6 94)	6 89 (6.33)	6.35 (6.5)	7.49 (6.51)	7.55 (7.01)	7.37 (6.75)	6.14 (6.77)	6.36 (7.58
4	10	6	4	<3	<3	4	25	5	8	<3	<3	4	3.9	4	3	<1.5	4	3.6	7.3	3.6					
																					5	2.7	2.2	7.3	<1.5
<0.5	<0.5	<0.5	<0.5	<0.5	<0 01	0.39	<0 01	< 0.01	<0 01	< 0.01	<0 5	<0.5	< 0.01	<0.5	<0 5	<0.5	<0 5	<1	<1	<0.5	< 0.01	< 0.01	<0.5	<0.5	<0.5
0.15	<0 03	< 0.03	<0 03	< 0.03	<0 03	< 0.03	<0 03	< 0.03	<0 03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
0.7784	0.242	0.6605	0.6255	0.6549	0.8637	0.97	1.596	1 553	1.797	1.34	1.051	0.6403	0.7023	0.6057	0.8926	0 533	0.8258	1.041	1.359	1 38	1.316	1.008	0.504	0.601	0 5692
<3	<3	<3	<3	<3	<3	<3	3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
0.3	<0.2	0.3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.4	0.2	<0 2	<0.2	<0 2	0.3	<0 2	0.3	<0 2	<0.2	0.3	<0.2	<0.2	<0.2	<0.2
<2	<2	<2	<2	<2	<2	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	NA	NA	<6	<6	<6	<6	<6	<6
<2	<2	<2	<2	<2	<2	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6
1.6	08	<0.2	<0.2	<0.2	<0.2	<0.2	0.6	0.6	0.4	1.3	1	<0.2	0.7	<0.2	0.5	0.6	<0 2	0.9	<0 2	1.1	1.4	0.7	<0.2	<0.2	<0.2
<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	2.5	<0.9	4.7	1.6	2.9	3.4	<0.9	<0 9	<0.9	<0 9	<0.9	1.2	6.6	1.6	<0.9	1.5	<0.9	<0.9	<0.9	<0.9
<0.4	12	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	15	< 0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
15	21	17	20	26	43	25	45	26	37	43	39	28	19	16	27	41	18	25	17	22	19	20	15	13	27
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	14	<10	<10	<10	<10	23	<10	<10
1	2	2	2	1	1	1	1	<1	<1	2	2	<1	<1	1	1	1	2	<1	<1	<1	<1	<1	<1	<1
.91 (6.22)	7.07 (6.32)	7 2 (7.23)	7.09 (7.7)	6.64 (7.87)	6.94 (7.11)	7.08 (7.29)	7.1 (7.20)	7.63 (6.90)	7 97 (7.17)	6.96 (7.18)	7.3 (6.59)	6.19 (6.74)	6.64 (7.04)	6.72 (7 32)	6 54 (7.60)	6.33 (6 95)	6.49 (6.9)	6.71 (6 37)	6 52 (6.59)	6.33 (6 55)	6.58 (7.04)	4.24 (6 9)	6.15 (6.83)	6.38 (7.58)
9	5	4	<3	<3	5	4	5	4	<3	<3	3	4.4	5	3.7	<1 5	6	5.2	8.9	3.6					
																				5.3	2.9	2.7	5.7	4
<0.5	<0.5	<0.5	<0.5	<0.01	<0 01	< 0.01	0.06	< 0.01	<0 01	<0.5	<0 5	< 0.01	<0 5	<0.5	<0 5	<0.5	<1	<1	<0 5	< 0.01	< 0.01	<0.5	<0.5	<0.5
<0.03	<0 03	< 0.03	<0 03	< 0.03	<0 03	< 0.03	<0 03	< 0.03	<0 03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
0 2365	0.6817	0.6246	0.646	0 8452	1.166	1 868	1.675	1 824	1.374	1 063	0.6517	0.6844	0.6228	0.8342	0.505	0.8812	1.069	1.381	1.308	1.321	1.02	0.4768	0.6217	0.552
<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
<0.2	08	<0.2	<0.2	<0.2	0.6	<0.2	<0.2	0.3	05	<0.2	0.7	<0.2	0.3	<0.2	<0 2	0.4	0.8	<0.2	<0 2	0.5	<0.2	<0.2	<0.2	<0.2
<2	<2	<2	<2	<2	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	NA	NA	<6	<6	<6	<6	<6	<6
<2	<2	<2	<2	<2	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6
0.9	<0.2	<0.2	<0.2	<0.2	09	1.2	09	1.5	1	0.8	0.4	<0.2	<0 2	<0.2	0.5	0.8	<0 2	<0.2	1	1.6	0.2	<0.2	<0.2	<0.2
<0.9	<0.9	1	<0.9	1.9	<0.9	<0.9	23	3.8	3.7	2.3	<0 9	<0.9	<0 9	<0.9	1.6	3	<0 9	2.1	2.2	2.8	<0.9	<0.9	<0.9	<0.9
0.6	08	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
22	18	21	29	47	26	38	29	43	45	45	30	21	18	28	48	20	26	17	23	19	21	15	14	32
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Dalradian Gold Ltd

Attention :

Date :

23rd March, 2018

Your reference :

DCS/SW Monthly

Our reference :

Location :

Status :

Issue :

Curraghinalt

Date samples received :

Final report

1

Compiled By:

Project Manager

Client Name: Reference: Location: Contact:

Dalradian Gold Ltd DCS/SW Monthly Curraghinalt

Report : Liquid

 $\label{eq:liquids/products} \begin{array}{l} \mbox{V=40ml vial, G=glass bottle, P=plastic bottle} \\ \mbox{H=}\mbox{H}_2\mbox{SO}_4,\mbox{Z=}\mbox{ZnAc, N=}\mbox{N=}\mbox{N=}\mbox{N=}\mbox{H}\mbox{N=}\mbox{H}\mbox{N=}\mbox{N}\mbox{N=}\mbox$

Sample No. 145 6-10 11-15 1-10 11-20 21-30 16-20 Image: Sample No. Image: Sample No. <t< th=""><th>Job No.</th><th>17/20545</th><th>17/20545</th><th>17/20545</th><th>17/20549</th><th>17/20549</th><th>17/20549</th><th>17/20545</th><th></th><th></th><th></th><th></th></t<>	Job No.	17/20545	17/20545	17/20545	17/20549	17/20549	17/20549	17/20545				
Sample ID DCS1 DCS2 DCS3 DCS4 DCS5 DCS6 DCS7 Image: Sample ID Sample ID <th< th=""><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	_											
Depth Cor No No No No No No No No Pease see attached notes for all abbreviations and acromyms Cortainers HNB PB000 HNB PB000 </th <th>Sample No.</th> <th>1-0</th> <th>0-10</th> <th>11-15</th> <th>1-10</th> <th>11-20</th> <th>21-30</th> <th>10-20</th> <th></th> <th></th> <th></th> <th></th>	Sample No.	1-0	0-10	11-15	1-10	11-20	21-30	10-20				
Depth Cor No No No No No No No No Pease see attached notes for all abbreviations and acromyms Cortainers HNB PB000 HNB PB000 </th <th>Comple ID</th> <th>0004</th> <th>DOCO</th> <th>DOCT</th> <th>DODA</th> <th>DODE</th> <th>DODA</th> <th>0007</th> <th></th> <th></th> <th></th> <th></th>	Comple ID	0004	DOCO	DOCT	DODA	DODE	DODA	0007				
COC No / misc Image were and user / measure and user / measur	Sample ID	DUST	0052	0053	DC54	DCS5	DCS0	DCS/				
COC No / misc Image were and user / measure and user / measur	Donth								 			
Cool, No /inite No. B PBOOD									 			
Sample Date 13/12207 13	COC No / misc											liongino
Sample type Survey wave	Containers	HN NB P BOD G	HN NB P BOD G	HN NB P BOD G	VH HN N NB P BOD G	VH HN N NB P BOD G	VH HN N NB P BOD G	HN NB P BOD G				
Batch Number 1 <	Sample Date	13/12/2017	13/12/2017	13/12/2017	13/12/2017	13/12/2017	13/12/2017	13/12/2017				
Batch Number 1 <	Sample Type	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water				
Date of Reciept 14/12/2017 14												
Dissolved Arsenic ⁴ 1.0 1.3 <0.9	Batch Number	1	1	1	1	1	1	1		 LOD/LOR	Units	
Dissolved Cadmium ⁴ <0.03	Date of Receipt	14/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017				NO.
Dissolved Cadmium ⁴ <0.03												
Total Dissolved Chromium ⁴ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.004 0.02 0.004 0.004 0.02 0.004 0.004 0.014 0.004 0.014 0.004 0.014 0.004 0.014 0.004 0.014 0.004 0.014 0.004 0.014 0.004 0.014 0.004 0.014 0.004 0.014 0.004	Dissolved Arsenic [#]								 	 	-	
Dissolved Copper ⁴ <3	Dissolved Cadmium#										-	
Total Dissolved Iron ⁴ 0.5999 0.1678 0.5759 0.5040 0.4768 <0.0047											_	
Dissolved Lead ⁴ <0.4										 	-	
Dissolved Mercury ⁴ <0.5										 		
Dissolved Nickel [#] <											_	
Dissolved Zinc [#] 2.9 250 3.1 2.2 2.7 <1.5											-	
Total Hardness Dissolved (as CaCO3) 9 208 15 15 15 12 207 1 1 1 1 1 1 1 1 1 1 207 1 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th> </th><th>-</th><th></th></th<>										 	-	
Hexavalent Chromium [#] <0006											-	
Total Dissolved Chromium III <6	Total Haldness Dissolved (as CaCCO)	3	200	15	15	15		201		 - 1	ingri	
Total Dissolved Chromium III <6	Hexavalent Chromium#	<0 006	<0.006	<0 006	<0.006	<0 006	<0.006	<0.006	 	 <0.006	ma/l	TM38/PM0
BOD (Settled) [#] <1											-	
pH [#] 6 90 7.40 7 30 7 37 4 24 5 24 7 56 < <p></p>										 	-	
	pH#	6 90	7.40	7 30	7 37	4 24	5 24	7 56		<0.01	_	
Image: Section of the section of t	Total Suspended Solids [#]	<10	10	14	25	23	<10	<10		<10	mg/l	TM37/PM0
Image: state s												
Image: state in the state intermImage: state intermI												
Image: state in the state intermImage: state intermI												
Image: state s												
Image: state in the state interval of the state i												
Image: state stat												
Image: state in the state interval of the state i												
Image: Problem Image: Proble									 	 		

Client Name:	Dalradian Gold Ltd
Reference:	DCS/SW Monthly
Location:	Curraghinalt

Contact:

Job No.	Batch	Sample ID	Depth	Sample No.	Analysis	Reason
					No deviating sample report results for jobs 17/20545,17/20549	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

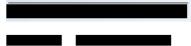
Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY


Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

ISO17025 (UKAS Ref No. 4225) accredited - UK.
ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
Indicates analyte found in associated method blank.
Dilution required.
MCERTS accredited.
Not applicable
No Asbestos Detected.
None Detected (usually refers to VOC and/SVOC TICs).
No Determination Possible
Calibrated against a single substance
Surrogate recovery outside performance criteria. This may be due to a matrix effect.
Results expressed on as received basis.
AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
Result outside calibration range, results should be considered as indicative only and are not accredited.
Analysis subcontracted to a Jones Environmental approved laboratory.
Samples are dried at 35°C ±5°C
Suspected carry over
Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
Matrix Effect
No Fibres Detected
AQC Sample
Blank Sample
Client Sample
Trip Blank Sample
Outside Calibration Range

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
тмо	Not available	PM0	No preparation is required.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-F D.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM20	Modified BS 1377-3: 1990/USEPA 160 3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes			
ТМЗО	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.				
ТМ30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
ТМ37	Modified USEPA 160 2 .Gravimetric determination of Total Suspended Solids. Sample is filtered and the resulting residue is dried and weighed.	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325 2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.				
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325 2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.	Yes			
TM57	Modified US EPA Method 410.4. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM58	Modified USEPA methods 405.1 and BS 5667-3. Measurement of Biochemical Oxygen Demand. When cBOD (Carbonaceous BOD) is requested a nitrification inhibitor is added which prevents the oxidation of reduced forms of nitrogen, such as ammonia, nitrite and organic nitrogen which exert a nitrogenous demand.	PM0	No preparation is required.	Yes			

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
ТМ60	Modified USEPA 9060. Determination of TOC by calculation from Total Carbon and Inorganic Carbon using a TOC analyser, the carbon in the sample is converted to CO2 and then passed through a non-dispersive infrared gas analyser (ND R).	PMO	No preparation is required.	Yes			
ТМ61	Modified US EPA methods 245.7 and 200.7. Determination of Mercury by Cold Vapour Atomic Fluorescence.	PM38	Samples are brominated to reduce all mercury compounds to Mercury (II) which is analysed using method TM061.				
ТМ61	Modified US EPA methods 245.7 and 200.7. Determination of Mercury by Cold Vapour Atomic Fluorescence.	PM38	Samples are brominated to reduce all mercury compounds to Mercury (II) which is analysed using method TM061.	Yes			
ТМ73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PMO	No preparation is required.	Yes			
ТМ76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM89	Modified USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM0	No preparation is required.				
TM170	Determination of Trace Metal elements by ICP-MS (Inductively Coupled Plasma - Mass Spectrometry) modified USEPA 200.8/6020A and BS EN ISO 17294-2 2016	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.				
NONE	No Method Code	NONE	No Method Code				

Dalradian Gold Ltd

lac-mra	
	4225

Attention :

Date :

23rd March, 2018

Your reference :

DCS/SW Monthly

Our reference :

Location :

Date samples received :

Curraghinalt

Issue :

Status :

Final report 1

Compiled By:

Project Manager

Client Name: Reference: Location: Contact:

Dalradian Gold Ltd DCS/SW Monthly Curraghinalt

Report : Liquid

Job No.	18/304	18/304	18/304	18/303	18/303	18/303	18/304				
_											
Sample No.	1-5	6-10	11-15	1-10	11-20	21-30	16-20				
Sample ID	DCS1	DCS2	DCS3	DCS4	DCS5	DCS6	DCS7				
Depth										otes for all	
COC No / misc									abbrevi	ations and a	cronyms
Containers	HN NB P BOD G	HN NB P BOD G	HN NB P BOD G	VH HN N NB P BOD G	VH HN N NB P BOD G	VH HN N NB P BOD G	HN NB P BOD G				
Sample Date	10/01/2018	10/01/2018	10/01/2018	10/01/2018	10/01/2018	10/01/2018	10/01/2018				
Sample Type	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water				
Batch Number	1	1	1	1	1	1	1		100400		Method
Date of Receipt	11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018	11/01/2018		LOD/LOR	Units	No.
Dissolved Arsenic [#]	<0.9	<0.9	1.6	<0.9	<0.9	<0.9	3.2		<0.9	ug/l	TM30/PM14
Dissolved Cadmium [#]	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		<0.03	ug/l	TM30/PM14
Total Dissolved Chromium#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	ug/l	TM30/PM14
Dissolved Copper [#]	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM30/PM14
Total Dissolved Iron #	0.7136	0.3651	0.6817	0.6010	0.6217	<0.0047	0.3601		<0.0047	mg/l	TM30/PM14
Dissolved Lead [#]	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4		<0.4	ug/l	TM30/PM14
Dissolved Mercury#	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	ug/l	TM30/PM14
Dissolved Nickel [#]	0.5	3.9	1.1	<0.2	<0.2	<0.2	4.2		<0.2	ug/l	TM30/PM14
Dissolved Zinc [#]	6.6	490	158	7.3	5.7	<1.5	48 0		<1.5	ug/l	TM30/PM14
Total Hardness Dissolved (as CaCO3)	10	194	40	13	14	<1	193		<1	mg/l	TM30/PM14
Hexavalent Chromium [#]	<0 006	<0 006	<0 006	<0 006	<0 006	<0 006	<0 006		<0 006	mq/l	TM38/PM0
Total Dissolved Chromium III	<6	<6	<6	<6	<6	<6	<6		<6	ug/l	NONE/NONE
BOD (Settled) [#]	<1	<1	<1	<1	<1	<1	<1		<1	mg/l	TM58/PM0
pH#	6 87	7.45	7 91	6.14	6.15	7 86	7 09		<0.01	pH units	TM73/PM0
Total Suspended Solids#	<10	<10	<10	<10	<10	<10	<10		<10	mg/l	TM37/PM0

Client Name:	Dalradian Gold Ltd
Reference:	DCS/SW Monthly
Location:	Curraghinalt

Contact:

Job No.	Batch	Sample ID	Depth	Sample No.	Analysis	Reason
				-	No deviating sample report results for jobs 18/303,18/304	· · · · · · · · · · · · · · · · · · ·

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

T
ISO17025 (UKAS Ref No. 4225) accredited - UK.
ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
Indicates analyte found in associated method blank.
Dilution required.
MCERTS accredited.
Not applicable
No Asbestos Detected.
None Detected (usually refers to VOC and/SVOC TICs).
No Determination Possible
Calibrated against a single substance
Surrogate recovery outside performance criteria. This may be due to a matrix effect.
Results expressed on as received basis.
AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
Result outside calibration range, results should be considered as indicative only and are not accredited.
Analysis subcontracted to a Jones Environmental approved laboratory.
Samples are dried at 35°C ±5°C
Suspected carry over
Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
Matrix Effect
No Fibres Detected
AQC Sample
Blank Sample
Client Sample
Trip Blank Sample
Outside Calibration Range

Test Method No.	Description	Prep Method No. (if appropriate)	Description ((MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
тмо	Not available	PM0	No preparation is required.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-F D.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM20	Modified BS 1377-3: 1990/USEPA 160 3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes			
ТМЗО	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.				
ТМ30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
ТМ37	Modified USEPA 160 2 .Gravimetric determination of Total Suspended Solids. Sample is filtered and the resulting residue is dried and weighed.	PM0	No preparation is required.	Yes			
ТМЗ8	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325 2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.				
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325 2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.	Yes			
TM57	Modified US EPA Method 410.4. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM58	Modified USEPA methods 405.1 and BS 5667-3. Measurement of Biochemical Oxygen Demand. When CBOD (Carbonaceous BOD) is requested a nitrification inhibitor is added which prevents the oxidation of reduced forms of nitrogen, such as ammonia, nitrite and organic nitrogen which exert a nitrogenous demand.	PM0	No preparation is required.	Yes			

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
ТМ60	Modified USEPA 9060. Determination of TOC by calculation from Total Carbon and Inorganic Carbon using a TOC analyser, the carbon in the sample is converted to CO2 and then passed through a non-dispersive infrared gas analyser (ND R).	PM0	No preparation is required.	Yes			
ТМ61	Modified US EPA methods 245.7 and 200.7. Determination of Mercury by Cold Vapour Atomic Fluorescence.	PM38	Samples are brominated to reduce all mercury compounds to Mercury (II) which is analysed using method TM061.				
ТМ61	Modified US EPA methods 245.7 and 200.7. Determination of Mercury by Cold Vapour Atomic Fluorescence.	PM38	Samples are brominated to reduce all mercury compounds to Mercury (II) which is analysed using method TM061.	Yes			
ТМ73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PMO	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PMO	No preparation is required.	Yes			
TM89	Modified USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM0	No preparation is required.				
TM170	Determination of Trace Metal elements by ICP-MS (Inductively Coupled Plasma - Mass Spectrometry) modified USEPA 200.8/6020A and BS EN ISO 17294-2 2016	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.				
NONE	No Method Code	NONE	No Method Code				

Dalradian Gold Ltd	Registered Address Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 BPL	
Attention :		
Date :	23rd March, 2018	
Your reference :		
Our reference :		
Location :		
Date samples receiv	ved :	
Status :		
Issue :	1	

Compiled By:

Client Name: Reference: Location: Contact:

Dalradian Gold Ltd DCS Curraghinalt

Report : Liquid

Liquids/products V=40ml vial, G=glass bottle, P=plastic bottle H=H₂SO₄, Z=ZnAc, N=NaOH, HN=HN0₃

Total Dissolved Chromium ⁴ -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 0.9 -0.2 0.9 -0.2 ug/t TM30/PM1 Dissolved Copper ⁴ -3 -3															
Sample ID DCS1 DCS2 DCS3 DCS4 DCS5 DCS6 DCS7 DCS7 DCS7 Please see attached notes for all abbreviations and according to abbreviations and according		18/1789	18/1789	18/1789	18/1786	18/1786	18/1786	18/1789							
Depth Col Sine Sine <th< th=""><th></th><th>1-5</th><th>6-10</th><th>11-15</th><th>1-10</th><th>11-20</th><th>21-30</th><th>16-20</th><th></th><th></th><th></th><th></th></th<>		1-5	6-10	11-15	1-10	11-20	21-30	16-20							
COC No /mic Image Proces Image Proces <th< th=""><th>Sample ID</th><th>DCS1</th><th>DCS2</th><th>DCS3</th><th>DCS4</th><th>DCS5</th><th>DCS6</th><th>DCS7</th><th></th><th></th><th></th><th></th></th<>	Sample ID	DCS1	DCS2	DCS3	DCS4	DCS5	DCS6	DCS7							
COC No /misc Image Proces Image Proces <t< td=""><td>Depth</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td colspan="6">Places son attached notes for all</td></t<>	Depth									Places son attached notes for all					
Sample Date 6602/2018 6702/2018 <th>COC No / misc</th> <th></th>	COC No / misc														
Sample Type Surface Wate Surface Wate<	Containers	HN NB P BOD G	HN NB P BOD G	HN NB P BOD G	VH HN N NB P BOD G	VH HN N NB P BOD G	VH HN N NB P BOD G	HN NB P BOD G							
Sample Type Surface Wate Surface Wate<	Sample Date	06/02/2018	06/02/2018	06/02/2018	06/02/2018	06/02/2018	06/02/2018	06/02/2018							
Batch Number 1 <															
Date of Receipt 07/02/2018 07															
Dissolved Arsenic ⁴ -0.9 -0.9<									 	LOD/LOR	Units				
Dissolved Cadmium ⁴ -0.03 -0.03 </td <td>Date of Receipt</td> <td>07/02/2018</td> <td>0//02/2018</td> <td>07/02/2018</td> <td>07/02/2018</td> <td>07/02/2018</td> <td>07/02/2018</td> <td>07/02/2018</td> <td></td> <td></td> <td></td> <td></td>	Date of Receipt	07/02/2018	0//02/2018	07/02/2018	07/02/2018	07/02/2018	07/02/2018	07/02/2018							
Dissolved Cadmium <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03	Dissolved Arsenic#	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9		<0.9	ug/l	TM30/PM14			
Total Dissolved Chornnium ⁴ <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <											_	TM30/PM14			
Dissolved Copper ⁴ <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <td></td> <td>_</td> <td>TM30/PM14</td>											_	TM30/PM14			
Total Dissolved Iron # 0.5669 0.1836 0.5692 0.5520 <0.0047 0.1862 </td <td>Dissolved Copper[#]</td> <td></td> <td></td> <td></td> <td><3</td> <td></td> <td></td> <td><3</td> <td></td> <td></td> <td>_</td> <td>TM30/PM14</td>	Dissolved Copper [#]				<3			<3			_	TM30/PM14			
Dissolved Mercury ⁴ <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5<	Total Dissolved Iron #	0.5669	0.1836	0.3665	0.5692	0.5520	<0.0047	0.1862		<0.0047	mg/l	TM30/PM14			
Dissolved Nickel* 0.2 5.1 2.4 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2<	Dissolved Lead #	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4		<0.4	ug/l	TM30/PM14			
Dissolved Zinc ⁴ 8.5 22.8 16.7 <1.5	Dissolved Mercury#	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	ug/l	TM30/PM14			
Total Hardness Dissolved (as CaCO3) 22 188 85 27 32 <1		0.2	5.1	2.4	<0.2	<0.2	<0.2	4.9		<0.2	ug/l	TM30/PM14			
Hexavalent Chromium [#] <0006	Dissolved Zinc#						<1.5				ug/l	TM30/PM14			
Total Dissolved Chromium III <6	Total Hardness Dissolved (as CaCO3)	22	188	85	27	32	<1	184		<1	mg/l	TM30/PM14			
BOD (Settled) [#] <1 <1 <1 <1 <1 2 <1 mg/l TM58/PM pH [#] 767 7.74 766 636 638 8.17 7.70 <1	Hexavalent Chromium#	⊲0 006	<0 006	<0 006	<0 006	<0 006	<0 006	<0 006		<0 006	mg/l	TM38/PM0			
pH# 767 7.74 766 636 638 8.17 7.70 < 		<6	<6	<6	<6	<6	<6	<6		<6	ug/l	NONE/NONE			
											-	TM58/PM0			
Total Suspended Solids* <10												TM73/PM0			
Image: stateImage: state </th <th>Total Suspended Solids*</th> <th><10</th> <th><10</th> <th><10</th> <th><10</th> <th><10</th> <th><10</th> <th><10</th> <th></th> <th><10</th> <th>mg/l</th> <th>TM37/PM0</th>	Total Suspended Solids*	<10	<10	<10	<10	<10	<10	<10		<10	mg/l	TM37/PM0			
Image: state in the state integraImage: state int									 	 					
Image: state in the state intermImage: state intermI															
Image: state in the state integraImage: state int															
Image: state s															
Image: state of the state of															
Image: sector of the sector															
Image: sector of the sector															
Image: state of the state of									 						
Image: state of the state															

Client Name:Dalradian Gold LtdReference:DCS

Location: Curraghinalt

Contact:

Job No.	Batch	Sample ID	Depth	Sample No.	Analysis	Reason
					No deviating sample report results for jobs 18/1786,18/1789	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

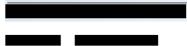
Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE SOUTH AFRICA LABORATORY


Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to a Jones Environmental approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
тмо	Not available	PM0	No preparation is required.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-F D.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM20	Modified BS 1377-3: 1990/USEPA 160 3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes			
тмзо	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	P M 14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.				
ТМЗО	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
ТМ37	Modified USEPA 160 2 .Gravimetric determination of Total Suspended Solids. Sample is filtered and the resulting residue is dried and weighed.	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325 2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.				
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325 2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.	Yes			
TM57	Modified US EPA Method 410.4. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM58	Modified USEPA methods 405.1 and BS 5667-3. Measurement of Biochemical Oxygen Demand. When CBOD (Carbonaceous BOD) is requested a nitrification inhibitor is added which prevents the oxidation of reduced forms of nitrogen, such as ammonia, nitrite and organic nitrogen which exert a nitrogenous demand.	PM0	No preparation is required.	Yes			

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
Тм60	Modified USEPA 9060. Determination of TOC by calculation from Total Carbon and Inorganic Carbon using a TOC analyser, the carbon in the sample is converted to CO2 and then passed through a non-dispersive infrared gas analyser (ND R).	PM0	No preparation is required.	Yes			
ТМ61	Modified US EPA methods 245.7 and 200.7. Determination of Mercury by Cold Vapour Atomic Fluorescence.	PM38	Samples are brominated to reduce all mercury compounds to Mercury (II) which is analysed using method TM061.				
ТМ61	Modified US EPA methods 245.7 and 200.7. Determination of Mercury by Cold Vapour Atomic Fluorescence.	PM38	Samples are brominated to reduce all mercury compounds to Mercury (II) which is analysed using method TM061.	Yes			
ТМ73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PMO	No preparation is required.	Yes			
ТМ76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PMO	No preparation is required.	Yes			
TM89	Modified USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM0	No preparation is required.				
TM170	Determination of Trace Metal elements by ICP-MS (Inductively Coupled Plasma - Mass Spectrometry) modified USEPA 200.8/6020A and BS EN ISO 17294-2 2016	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.				
NONE	No Method Code	NONE	No Method Code				

OUTWARDS CHECKLIST

Calibration

YSI & Cable Serial Numbers: 15F100788 / 15D100374

	Reading	Target	Acceptable	Pass
Temp	15-6	Ref: 15.5	± l∘C	
pH7mv	-27.9	0.0	0 ± 50	
pH4mv	145 8	177	177 ± 50	~
pH Slope	173.7	177	162 - 180	\checkmark
Cond. Cell Constant	4.9	5	4.6 - 5.4	
Redox Offset	16-4	0.0	±50.0	1
DO Gain	Pass or fail d	etermined	by the meter	V

All parameters were within acceptable range on the day of despatch; however we do recommend that the instrument is calibrated daily to ensure accurate readings.

* Calibrated to manufacturers standards

Signed:				
Name:				

Date: 27.03.17