

Discharge Consent (068/12/3) Reporting

September to November 2018

Author – Dalradian Gold Ltd

> Date 20th December 2018

TABLE OF CONTENTS

1.0 Introduction	1
2.0 Summary of operations during the reporting period	1
3.0 Sampling locations, protocol and laboratories	1
4.0 Results	3
4.1 Quality Assurance/Quality Control	3
4.1.1 Chain of Custody and confirmation of parameter analysis	3
4.1.2 Holding times	3
4.1.3 Field Blanks	3
4.1.4 Duplicate Samples	4
4.1.5 Laboratory internal QA/QC	4
4.1.6 Summary	5
4.2 Factual Presentation of Data	5

Appendix A – Presentation of Water Quality Results

Appendix B – Laboratory Certificates

Appendix C – YSI MultiParameter Meter Calibration Certificate

1.0 INTRODUCTION

This report has been prepared by Dalradian Gold Ltd. (DGL) in response to Condition 1.1. of Discharge Consent 068/12/3, which requires quarterly water quality reporting. The consent relates to discharge of site drainage water (at Irish Grid Reference H 5707 8690) arising from the DGL advanced exploration project at Curraghinalt. The site is situated approximately 8 km to the east of the village of Gortin, County Tyrone, Northern Ireland, BT79 7SF.

2.0 SUMMARY OF OPERATIONS DURING THE REPORTING PERIOD

DGL have progressed advanced exploration at the Curraghinalt site. The work progressed under Planning Permission K/2014/0246/F, and has been aimed at collecting information that will support a Feasibility Study and an Environmental Impact Assessment to allow for development of a full mine.

Water discharged via the consent during the reporting period has derived from natural groundwater drainage to the exploration adit and runoff water from various components of the site that has resulted from incident rainfall. Following capture and management of these sources, treatment prior to discharge at the consent location has included passage through a settlement tank, oil interceptor, lamella clarifier (for further sediment removal), and a pH adjustment tank.

DGL informed the Northern Ireland Environment Agency (NIEA) of the intention to commence the site discharge on 3 December 2014. This document represents the 16th quarterly discharge consent report.

3.0 SAMPLING LOCATIONS, PROTOCOL AND LABORATORIES

Five surface water sample locations are required to be sampled monthly as part of the Discharge Consent. These have been listed below as Discharge Consent Sample 1 (DCS1) to Discharge Consent Sample 5 (DCS5) and are also presented on Figure 1.

- DCS1 Immediately upstream of the confluence of the site discharge point and Curraghinalt Burn;
- DCS2 Site discharge point;
- DCS3 5 m downstream of the confluence of the site discharge point and Curraghinalt Burn;
- DCS4 Immediately upstream of the confluence of Curraghinalt Burn and the Owenkillew River; and
- DCS5 5 m downstream of the confluence of the Curraghinalt Burn and the Owenkillew River.

DGL has also added 2 more samples as part of QA/QC. The sample ID's are:

- DCS6 a blank sample consisting of deionised water; and
- DCS7 a duplicate of any sample between DCS1 and DCS5.

Figure 1: Site map (Google Maps) showing discharge consent sample locations

All surface water samples are collected according to protocols described in the DGL Surface Water Sampling Procedure¹. To help ensure quality results, care is taken not to disturb stream bed sediments upstream of the sampling point and prior to sampling. Samples are collected at all locations by a DGL Field Technician wearing a fresh pair of nitrile gloves and from the flowing stream of water to minimise any risks of contamination. All sample bottles are laboratory supplied and are filled to capacity at source.

In accordance with best practice, field filtration for dissolved parameters is undertaken on site using a syringe and attached 0.45µm filter, and these samples are associated with a nitric acid (HNO₃) preservative to thereafter stabilise dissolved metals in solution. All laboratory analytical services during the quarter, including supplementary Quality Assurance/Quality Control (QA/QC) testing, have been provided by

Samples are placed in a cooler with ice, secured with sample packaging and accompanied by a completed Chain of Custody (CoC) Form, and shipped directly to **Complete Chain** in **Custody** for analysis. are accredited by the United Kingdom Accreditation Service (UKAS) to 17025 standard, and UKAS monitor and externally audit the laboratory.

DGL have also been working to include the measurement of pH in the field at each sample location. Regular calibration of the instrument used is undertaken on site using both pH 4.01 and pH 7.01 buffer

¹ Dalradian Gold Ltd. 2013 & 2015. Surface Water Sampling Procedure.

solutions and in accordance with DGL MultiParameter Meter Calibration Procedure². During readings, the pH probe is fully immersed at all times in the flowing stream of water and up until stabilisation occurs³.

4.0 RESULTS

During this reporting period DGL have collected a total of 3 rounds of water samples from the discharge consent locations. This number of samples meets that required by the consent during the period. Sampling was undertaken on the 5th of September, 3rd of October and the 6th November 2018.

QA/QC checks and factual reporting against the consent water quality thresholds for the discharge point are presented in the following sub-sections. Water quality results and thresholds are summarised in Appendix A, and all laboratory certificates are presented in Appendix B.

4.1 Quality Assurance/Quality Control

A number of QA/QC measures have been applied to water samples taken at all sites. A factory calibrated certificate for the YSI Professional Series Multiparameter probe used to measure pH in the field is provided in Appendix C.

4.1.1 Chain of Custody and confirmation of parameter analysis

A chain of custody (CoC) form was completed on each day of sampling. The CoC forms document possession of the samples from the time of sample collection to reception at the lab; provide primary instruction to the lab on the parameters to be analysed; and provide sample information relevant to the lab, such as sample name and sample date and time. Following each sampling event and prior to submission to the lab, the CoC was reviewed and checked for errors. In the events covered within the period there are no issues to report in this respect.

4.1.2 Holding times

In order to ensure holding times were not exceeded, DGL shipped samples directly to the laboratory. Certificates presented in Appendix B demonstrate that all samples were received by **Excertification** the next day after sampling. Testing is recorded on CoC forms to have been scheduled for a standard 10 day turnaround time on all occasions.

4.1.3 Field Blanks

A total of three field blanks have been collected during the reporting period to assess potential contamination due to the sampling environment (e.g., dust getting into the sample bottle). Analysis of field blanks was undertaken by the laboratory alongside the specified water chemical analysis. Field blank results include total ambient conditions during sampling, but can also potentially incorporate bias due to laboratory methods (e.g., low-level constituents remaining in analytical equipment from a prior highly contaminated sample from another site) that are assessed by laboratory method blanks. The field blanks incorporated deionised water which theoretically should return no measurable values throughout the parameters analysed (with the omission of pH) unless there has been a source of contamination during sampling.

All determinants in three blank samples were below laboratory detection limits apart from dissolved chromium (2.2 μ g/L) on the 5th of September and BOD on the 3rd of October (which had a result of 3 mg/L). The BOD result is three times the reported Limit of Detection (LoD) and is considered low level and acceptable. The dissolved chromium result is more than ten times the corresponding LoD (0.2 μ g/L) and is considered to be elevated beyond what could be expected for a blank sample. However,

² Dalradian Gold Ltd. 2013 & 2015. MultiParameter Meter Calibration Procedure.

³ Dalradian Gold Ltd. 2013 & 2015. MultiParameter Meter Sampling Procedure.

the result is considered to be anomalous in that five of the actual field samples collected on the same day (5th September) determined dissolved chromium to be less than detect, with one sample only returning a positive determination which was significantly less than the blank concentration. All data are well within the stated discharge consent informative for dissolved chromium of 8.1 μ g/L which signifies a good standard for rivers and freshwater lakes, and within this context there is no obvious impact on the objective of the dataset.

4.1.4 Duplicate Samples

Three duplicate samples were collected during the reporting period, and all from the discharge point (DCS2). Analysis of all duplicate samples was undertaken by and therefore alongside the remaining batch.

The measure of the reproducibility or precision of the chemical analysis has been quantified by calculating the Relative Percentage Difference (RPD) between parameter concentrations on the split sample submitted as a blind duplicate. The RPD has been calculated as follows:

$$RPD\% = \frac{|S - D|}{\frac{1}{2}(S + D)} \ge 100$$

Where:

RPD = Relative Percentage Difference

S = Sample value of parameter; and

D = Duplicate value of parameter

Theoretically, duplicate samples should have identical chemical concentrations (i.e., RPD = 0). However, due to factors such as sample matrix heterogeneity, natural variations or variations due to sample collection, handling or analysis, a variation in chemical concentration may occur (i.e., RPD greater than 0).

It should be noted that the reproducibility of replicate analyses at concentrations near the method detection limit (MDL) can be poor, resulting in RPD values of greater than the desirable limits. Therefore, for duplicate concentrations greater than five times the detection limit, a relative percent difference value of $\pm 20\%$ is considered acceptable⁴. Given these considerations, for duplicate concentrations less than five times the detection limit, RPD has not been calculated.

An RPD value greater than the above project objectives suggests variability has been introduced through sample collection, sample handling, or sample analysis. Of the analysis undertaken no parameters were found to be outside the acceptable RPD.

4.1.5 Laboratory internal QA/QC

report data only if the laboratory is confident that the results are a true reflection of the samples analysed, and data is only reported as accredited when all the requirements of their Quality System have been met. Any failure in the Quality System is fully investigated and documented as deviating samples on certificates issued. If samples are received in a condition inappropriate to the requested analyses, for example if they are dispatched in inappropriate containers or at a temperature not commensurate with the requested analysis, any test results that may be compromised will be highlighted in a deviating samples report.

⁴ Zeiner, S.T. 1994. Realistic Criteria for the Evaluation of Field Duplicate Field Results. Proceedings of Superfund XV, November 29-December 1, 1994. Sheraton Washington Hotel, Washington, D.C.

On all laboratory certificates returned, all samples sent for analysis were scheduled upon receipt. No deviating samples were found during this sampling period.

4.1.6 Summary

As detailed above, there are no major QA/QC concerns regarding the dataset presented. Duplicate and blank samples collected also indicate a high level of data quality. An unusually high level of dissolved chromium occurred in one blank sample, but this did not result in any apparent bias in the water quality results.

4.2 Factual Presentation of Data

All water quality results are presented in summary for each location in Appendix A. This includes a comparison of concentrations from the discharge point location (DCS2) against specific threshold values detailed within the consent.

During the reporting period, all three sample results from DCS2 are below the threshold values presented within the consent for all parameters.

Water quality obtained from the Curraghinalt Burn during the period can be summarised as follows:

- Total suspended solids were below detection (<10 mg/L) in all cases;
- BOD concentrations ranged from below detection (<1 mg/L) to 6 mg/L;
- Laboratory measured pH varies between a minimum of 6.12 pH units (recorded at the upstream location) and a maximum of 7.91 pH units (recorded at the downstream location);
- Dissolved zinc concentrations varied between a minimum concentration of 4.5 µg/L found at the upstream location and 22 µg/L found at the downstream location;
- Dissolved arsenic concentration ranged from below detection at <0.9 μg/L to 3.4 μg/L;
- Dissolved lead concentrations were below detection at <0.4 μg/L (at both the downstream and upstream locations);
- Oil or grease has not been visible at the sample locations;
- The maximum dissolved iron concentration has been determined at 3.915 mg/L at the upstream location; and
- The maximum total hardness has been recorded as 97 mg/L at the downstream location.

Water quality obtained from the Owenkillew River during the period can be summarised as follows:

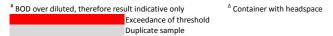
- Total suspended solids were below detection (<10 mg/L) in both the upstream and downstream locations;
- BOD concentrations varied from below detection (<1 mg/L) to 3 mg/L;
- Laboratory measured pH varies between a minimum of 6.19 pH units (recorded at the downstream location) and a maximum of 6.97 pH units (recorded at the downstream location);
- Oil or grease has not been visible at the sample locations;
- The maximum dissolved iron concentration has been determined at 1.522 mg/L at the upstream location; and
- Dissolved zinc concentrations varied from 3.1 μg/L to 38.9 μg/L both in the downstream location;
- The maximum total hardness has been recorded as 44 mg/L at the downstream location.

Appendix A

Presentation of Water Quality Results

DCS2 - Discharge Point										_												-	
Parameter	Discharge Consent Threshold	Detection limit (typical)	27/11/2014	16/12/2014	18/12/2014	4 14/01/201	5 04/02/2015	Duplicate/DCS7	11/02/2015	Duplicate/DCS7	Duplicate	23/03/2015	26/03/2015	Duplicate	23/04/2015	Duplicate	28/05/2015	28/05/2015	02/06/2015	30/07/2015	6 04/08/2015	Duplicate	02/09/2015
Total Suspended Solids	50	10	3	11	18	22	6	<3	13	11	8	3	27	31	7	10	23	36	39	<10	14	23	11
Biochemical Oxygen Demand	10	1	<1	<1	<1	1.58 [#]	1.76 [#]	1.61 [#]	1.03	<1	<2	<2	1.23 [#]	<2	1.04	<2	1.71 [#]	1.49 [#]	<1	<1	1	8	3
рН	>6 & <9	-	7.38	7.47	7.08	7.18	7.34 (7.00)	6.92	7.5 (7.48)	7.68	7.8	7.7	7.83 (8.54)	7.8	7.83	7.9	8.29	8.27	7.82	7.98	7.69 (8.41)	7.7	8.09
Total zinc ⁴	33.8	3	<18	<18	30	30	<18	<18	<18	<18	11.47	10.21	<18	30.07	<18	<3.73	17.8	14.6	<18	4	6	14.59	13
Dissolved zinc	490	1.5																					
Dissolved mercury ⁴	1.7	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.1	<0.2	<0.1	< 0.04	< 0.01	<0.01	<0.1	< 0.01	<0.01	1.051	<0.01
Dissolved cadmium ⁴	0.7	0.03	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	< 0.09	<0.09	<0.6	<0.09	<0.6	< 0.05	<0.1	<0.1	<0.6	0.13	0.06	0.121	0.36
Dissolved iron ⁴	3.9	0.0047	<0.23	<0.23	<0.23	< 0.23	<0.23	0.34	<0.23	<0.23	0.04908	0.03045	<0.23	0.8087	<0.23	0.18	< 0.019	< 0.019	<0.23	<0.0047	0.1384	0.9932	0.0082
Dissolved copper ⁴	16.2	3	12	10	<9	<9	<9	<9	<9	<9	9.065	7.101	10	2.202	<9	4.765	9.39	8.77	<9	<3	<3	13.99	<0.3
Dissolved chromium ²	8.1	0.2	<2	<2	2	7	2	<2	<2	<2	<0.68	<0.68	<2	<0.68	<2	<0.28	2.13	2.01	<2	<0.2	<0.2	<0.68	0.6
Chromium VI	N/A	2	<5	<5	<5	9	<5	<5	<5	<5			<5		<5		<30	<30	<5	<2	<2		<2
Chromium III	N/A	2	<30	<30	<30	<30	<30	<30	<30	<30			<30		<30		<30	<30	<30	<2	<2		<2
Dissolved nickel ³	20	0.2	<3	<3	6	14	10	<3	14	11	12.01	6.544	5	0.833	7	5.578	5.22	5.09	5	6.5	7	9.321	5.3
Dissolved arsenic ¹	50	0.9	1	<1	<1	3	4.8	1.1	5.1	4.3	6.23	2.971	7.9	1.929	2.5	2.214	16	13.7	7.7	6.7	6.5	8.64	4.2
Dissolved lead ³	7.2	0.4	<6	<6	<6	<6	<6	<6	<6	<6	<0.173	<0.173	<6	<0.173	<6	<0.12	< 0.02	<0.02	<6	2.6	2.5	0.37	4.7
Total hardness as CaCO3	N/A	1	123	137	132	135	137	24.1	150	146	139	136	106	114	147	159	140	148	141	179	175	183	163
Visible oil or grease	N/A	N/A	-	-	-	-	-	-		-	-	-	-	-		-		-	-	-	-	-	-

Notes:


pH values presented in pH units. Values in brackets are field pH measurements. Total Suspended Solids, Biochemical Oxygen Demand, Total hardness & Dissolved iron concentrations are presented in mg/L, all other parameters are in µg/L. ^{1,283} Threshold from The Water Framework Directive (Priority Substances and Classification) Regulations (Northern Ireland) 2011

¹ Annual mean value presented for 'Good Standard for rivers and freshwater lakes'

² Annual mean environmental standard for chromium III (4.7µg/L) plus annual mean environmental standard for chromium VI (3.4µg/L) presented for 'Good Standard for rivers and freshwater lakes'

³ Annual mean environmental standard (AA-EQS) value presented for priority substance and its compounds for all rivers and lakes

Total Suspended Solids in discharge water (mg/L)	Biochemical Oxygen Demand in discharge water (mg/L)	pH (lab.) of discharge water
60 50 Threshold max. 50 mg/L 40	12 10 Threshold max. 10 mg/L	9.5 9 Threshold max. 9 pH units 8.5
20	8	
		6.5 6 Threshold min. 6 pH units 5.5
est transfer the standard standard and the standard standar	BILLIAS LIND BIRLING BIRLI	entriese energian energi

Notes: Half detection limit used for graphing when parameter less than detect Error bars of 20% to reflect limit of acceptable duplicate reproducibility

28/09/2015	Duplicate	01/10/2015	22/10/2015	Duplicate	05/11/2015	Duplicate	09/12/2015	Duplicate	06/01/2016	Duplicate	03/02/2016	Duplicate	03/02/2016	Duplicate	02/03/2016	Duplicate	06/04/2016	Duplicate	04/05/2016	Duplicate	02/06/2016	Duplicate	04/07/2016	Duplicate	03/08/2016	Duplicate	06/09/2016	Duplicate	05/10/2016	Duplicate	03/11/2016
													Retest	Retest																	
<10	12	12	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-	-	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
3	3	2	2	1	1	<1	<1	1	<1	<1	<1	<1	-	-	<1	3	1	1	2	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
7.74	7.73	8.96	7.35	7.14	7.85 (7.53)	8.06	7.76 (7.28)	8.07	7.58 (7.05)	7.47	7.32 (7.10)	7.27	-	-	7.08 (7.02)	7.09	7.27 (7.11)	7.42	7.36 (7.07)	7.39	7.06 (7.35)	7.07	7.38 (7.08)	7.17	7.29 (6.95)	7.19	7.34 (7.18)	7.37	7.53 (6.81)	7.06	7.47 (6.91)
28	31	7	12	10	5	5	13	12	9	9	33	35	30	30	13	11	19	18.6	<3	<3	5	6	3	3	3	3	<3	<3	7	6	7
<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01
0.2	0.21	0.25	0.16	0.21	0.24	0.14	0.43	0.19	0.25	0.12	<0.03	<0.03	-	-	< 0.03	<0.03	< 0.03	<0.03	< 0.03	<0.03	< 0.03	<0.03	< 0.03	<0.03	<0.03	<0.03	< 0.03	<0.03	<0.03	<0.03	<0.03
0.5821	0.5538	0.3261	0.6625	0.6613	0.2782	0.2208	0.0352	0.0075	0.1227	0.2064	0.1852	0.2213	-	-	0.4409	0.3247	0.4914	0.4934	0.5691	0.596	0.4472	0.4561	0.9222	0.9363	0.4984	0.5022	0.4894	0.4811	0.3381	0.3371	0.5496
5	5	4	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	-	-	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
<0.2	<0.2	0.2	<0.2	<0.2	<0.2	<0.2	1.4	<0.2	0.3	<0.2	0.7	<0.2	-	-	0.5	0.3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.3	<0.2	0.3	<0.2	<0.2	0.5	<0.2	<0.2
<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	-	-	<2	<2	<2	<2	<2	<2	<2	<2	<6	<6	<6	<6	<6	<6	<6	<6	<6
<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	-	-	<2	<2	<2	<2	<2	<2	<2	<2	<6	<6	<6	<6	<6	<6	<6	<6	<6
5	4.9	2.7	3.3	3.7	5.5	5.2	7.4	5.8	5.5	5.1	5.3	4.7	-	-	6.3	4.4	3	3	4.5	3.2	4.7	4.9	3.3	4.7	4.6	4	3.3	3.5	5.6	5.2	5.4
7.5	6.5	4.7	3.5	1.8	3.2	3.9	0.9	2.6	6.7	5.1	<0.9	<0.9	-	-	2.4	<0.9	<0.9	<0.9	2.5	6	2.6	2.5	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	4
4.4	4.5	<0.4	1.9	1.8	3.6	2.8	6.5	3.8	3.3	4	<0.4	<0.4	-	-	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
157	157	93	167	168	197	198	200	202	208	207	195	193	-	-	171	170	189	191	190	212	223	215	194	195	179	176	186	186	176	177	192
-	-	-	-	-		-		-	-	-	-	-	-	-		-		-		-		-		-	-	-	-	-	-	-	-

Duplicate	06/12/2016	Duplicate	18/01/2017	Duplicate	01/02/2017	Duplicate	20/03/2017	Duplicate	04/04/2017	Duplicate	09/05/2017	Duplicate	06/06/2017	Duplicate	06/07/2017	Duplicate	03/08/2017	Duplicate	05/09/2017	Duplicate	10/10/2017	Duplicate	14/11/2017	Duplicate	13/12/2017	Duplicate	10/01/2018	Duplicate	06/02/2018	Duplicate	07/03/2018	Duplicate
<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	11	<10	<10	15	14	<10	<10	<10	<10	10	<10	<10	<10	<10	<10	<10	<10
1	2	<1	<1	<1	<1	<1	<1	<1	3	3	2	2	<1	<1	3	3	<1	<1	2	<1	<1	<1	<1	<1	2	4	<1	<1	<1	2	<1	1
7.29	7.16 (6.88)	7	7.05 (7.00)	6.68	7.39 (7.18)	7.53	7.51 (7.00)	7.5	7.34 (7.22)	7.36	7.63 (7.27)	7.35	7.35 (7.27)	7.32	7.05 (6.95)	7.27	7.75 (7.26)	7.7	7.6 (6.50)	7.67	7.08 (6.5)	6.85	7.54 (7.51)	7.33	7.4 (7.54)	7.56	7.45 (7.64)	7.09	7.74 (7.78)	7.7	7.79 (7.74)	7.82
6	<3	<3	25	26	29	28	29	32	12	11	3	3	10	10	2.6	2.7	NA	NA	9	10												
																					3.9	2.9	2.4	2.2	25.0	23.7	49	48	22.8	22.9	11.6	12.2
< 0.01	<0.5	<0.5	<0.5	<0.5	< 0.01	< 0.01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<1	<1	<1	<0.5	<0.5	< 0.01	< 0.01	<0.01	< 0.01	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	< 0.03	<0.03	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	< 0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
0.6054	0.4327	0.44	0.1683	0.1642	0.1571	0.1609	< 0.0047	< 0.0047	0.7468	0.7717	0.4589	0.4493	0.257	0.2594	1.981	1.87	0.407	0.3984	0.3153	0.1476	1.798	1.865	0.3139	0.2942	0.1678	0.2195	0.3651	0.3601	0.1836	0.1862	0.238	0.2461
<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
<0.2	0.3	<0.2	<0.2	0.3	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.9	<0.2	<0.2	<0.2	2.2	<0.2	0.3	0.3	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.9	0.3	0.8
<6	<6	<6	<6	<6	<6	<6	<6	<6	NA	NA	<6	<6	<6	<6	NA	NA	NA	NA	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6
<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6
5.3	4.2	3.2	5.9	5.7	8	7.6	4.4	3.9	3.8	4	3.2	2.7	2	2.9	1.7	1.5	1.8	2.1	2	3.2	2.7	2.7	4.3	3.5	4.8	4.5	3.9	4.2	5.1	4.9	4.7	4.5
5.6	3.9	4.3	3.3	2	2.6	2.2	<0.9	<0.9	1.5	2.1	<0.9	2.5	2.1	<0.9	5.8	4.3	<0.9	<0.9	1.1	<0.9	4.1	3.5	1.2	3.4	1.3	1.9	<0.9	3.2	<0.9	<0.9	<0.9	<0.9
<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	0.5	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
200	197	190	284	284	196	199	191	188	186	186	179	183	173	172	200	204	175	167	195	180	203	208	179	178	208	207	194	193	188	184	189	180
-	-	-		-	-	-		-	-	-		-	-	-	-	-	-	-	-	-		-	-	-	-	-		-	-	-		-

04/04/2018	Duplicate	03/05/2018	Duplicate	11/06/2018	Duplicate	09/07/2018	Duplicate	06/08/2018	Duplicate	05/09/2018	Duplicate	03/10/2018	Duplicate	06/11/2018	Duplicate
<10	12	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
2	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	2	2	<1	<1
7.29 (7.35)	7.38	7.44 (7.25)	7.62	7.94 (7.72)	8.05	7.42 (8.45)	8.08	7.64 (8.24)	8.1	7.25 (8.3)	8.34	8.4 (8.03)	8.34	8.3 (8.03)	8.3
6.5	8.4	24.9	22.8	6.5	64.8	5.1	2.9	5.9	5.2	3.4	<1.5	4.8	5.1	11.2	11.9
<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
<0.03	< 0.03	<0.03	< 0.03	<0.03	< 0.03	<0.03	< 0.03	<0.03	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	<0.03	< 0.03
0.5607	0.5754	0.2296	0.3156	0.1179	0.0992	0.0244	0.0181	0.0141	0.0114	< 0.0047	< 0.0047	<0.0047	< 0.0047	< 0.0047	< 0.0047
<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
<0.2	<0.2	0.6	0.2	0.6	0.5	<0.2	<0.2	1.1	1.4	<0.2	<0.2	0.4	<0.2	<0.2	<0.2
<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6
<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6
3.6	3.8	3.8	3.4	3.3	3.1	2.2	2.7	3.1	2.3	2.2	<0.2	3.1	3.2	4.1	3.4
<0.9	<0.9	1.9	2	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	2.0	<0.9	<0.9	<0.9	<0.9	<0.9
<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
180	176	190	189	177	177	178	178	170	170	182	186	186	188	179	176
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Discharge Point

DCS1 - Curraghinalt Burn upstream

Parameter	Detection limit (typical)	27/11/2014	16/12/2014	18/12/2015	14/01/201	5 04/02/2015	11/02/2015	Duplicate	26/03/2015	23/04/2015	21/05/2015	28/05/2015	02/06/2015	28/07/2015	30/07/2015	5 04/08/2015	02/09/2015	01/10/2015	22/10/201	5 05/11/2015	6 09/12/2015	06/01/2015	03/02/2015	02/03/2016	06/04/2016	04/05/2016
Total Suspended Solids	10	<3	<3	<3	9	<3	<3	<2	18	<3	3	5	4	9	<10	<10	32	<10	<10	17	<10	<10	<10	<10	<10	<10
Biochemical Oxygen Demand	1	<1	<1	<1	1.87 [#]	1.39 [#]	<1	<2	1.23#	<1	1.29 [#]	<1	<1	1.49 ^{#Δ}	1	2	1	2	<1	2	2	1	<1	2	2	2
рН	-	6.7	6.75	7	6.9	7.23 (6.73)	6.8 (7.33)	8.2	6.81 (7.05)	6.99	7.19	7.7	6.57	5.94 (6.49)	6.85	5.74 (8.36)	7.46	6.75	7.34	7.74 (7.54)	6.79 (6.49)	7.59 (6.64)	6.09 (4.82)	7.18 (6.87)	6.70 (6.71)	6.94 (7.5)
Total zinc	3	<18	<18	<18	20	<18	<18	5.394	<18	<18	<18	7.49	<18	14	8	7	8	7	6	28	4	4	20	8	4	<3
Dissolved zinc	1.5																									
Dissolved mercury	0.5	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	< 0.01	<0.1	0.51	< 0.01	< 0.01	< 0.01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dissolved cadmium	0.03	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	< 0.09	<0.6	<0.6	<0.6	<0.1	<0.6	6.9	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.09	0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03
Dissolved iron	0.0047	2.07	0.52	0.67	0.39	0.36	0.36	0.6633	<0.23	1.34	1.34	1.47	0.52	1.2	2.569	2.046	6.269	6.646	5.39	4.41	1.131	1.276	0.3198	0.7347	0.7676	1.861
Dissolved copper	3	<9	<9	<9	<9	<9	<9	7.207	<9	<9	<9	2.56	<9	9.6	<3	<3	4	<3	<3	4	<3	<3	<3	<3	<3	<3
Dissolved chromium	0.2	<2	<2	<2	<2	<2	<2	<0.68	<2	<2	<2	0.956	<2	4.7	<0.2	0.6	1.2	0.4	<0.2	0.3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chromium VI	2	<5	<5	<5	<5	<5	<5		<5	<5	<5	<30	<5	<20	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Chromium III	2	<30	<30	<30	<30	<30	<30		<30	<30	<30	<30	<30	<20	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved nickel	0.2	<3	<3	<3	<3	<3	<3	0.702	<3	<3	<3	0.913	<3	3.1	0.7	1	1.6	1.3	0.3	0.7	<0.2	1.2	0.4	0.3	<0.2	<0.2
Dissolved arsenic	0.9	2.4	<1	<1	<1	1.3	<1	1.197	2	3.2	2.2	3.69	1.2	2.8	2.5	2.6	4.6	5.9	2.8	<0.9	1.2	1.8	<0.9	<0.9	<0.9	2.5
Dissolved lead	0.4	<6	<6	<6	<6	<6	<6	0.284	<6	<6	<6	0.315	<6	2.1	<0.4	<0.4	2.7	<0.4	<0.4	1.2	1.1	1.2	<0.4	0.6	<0.4	<0.4
Total hardness as CaCO3	1	21.7	16.2	21.1	30.1	24.2	19.7	19	13.4	33.1	17.6	29.4	9.98	<15	229	12	23	30	24	37	7	12	18	16	9	21
Visible oil or grease	N/A	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes: pH values presented in pH units. Values in brackets are field pH measurements. Total Suspended Solids, Biochemical Oxygen Demand, Total hardness & Dissolved iron concentrations are presented in mg/L, all other parameters are in µg/L. # BOD over diluted, therefore result indicative only

DCS3 - Curraghinalt Burn downstream

DCS3 - Curraghinalt Burn downstream																										
Parameter	Detection limit (typical)	27/11/2014	16/12/2014	18/12/2014	14/01/201	5 04/02/2015	11/02/2015	26/03/2015	23/04/2015	21/05/2015	28/05/2015	02/06/2015	Duplicate	28/07/2015	30/07/2015	04/08/2015	02/09/2015	01/10/2015	22/10/201	5 05/11/2015	09/12/2015	06/01/2015	03/02/2015	02/03/2016	06/04/2016	04/05/2016
Total Suspended Solids	10	3	8	4	5	3	5	28	72	<3	18	9	3	16	<10	<10	<10	<10	<10	10	<10	<10	<10	<10	<10	<10
Biochemical Oxygen Demand	1	1.08#	<1	<1	1.65#	1.91#	<1	1.31#	<1	1.25#	1.22#	<1	<2	1.42 ^{#Δ}	1	2	1	1	<1	2	3	<1	<1	2	2	1
рН	-	7.19	7.46	6.95	7.44	7.16 (6.93)	7.45 (7.2)	6.91 (7.31)	7.82	7.88	7.76	6.81	7.4	6.02 (6.28)	7.12	5.95 (6.40)	7.12	6.45	7.46	7.73 (7.5)	7.45 (6.5)	7.47 (6.68)	7.35 (5.77)	6.86 (7.14)	7.12 (6.77)	7.4 (7.25)
Total zinc	3	<18	<18	<18	20	<18	<18	<18	<18	<18	11.2	<18	36.51	13	9	7	9	7	8	17	4	6	18	8	4	<3
Dissolved zinc	1.5																									
Dissolved mercury	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.01	<0.1	<0.2	<0.5	< 0.01	< 0.01	< 0.01	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dissolved cadmium	0.03	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.1	<0.6	<0.09	0.45	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.07	< 0.03	< 0.03	< 0.03	<0.03	< 0.03	<0.03
Dissolved iron	0.0047	1.78	0.54	0.65	0.38	0.25	0.25	0.24	0.8	1.13	1.03	0.52	1.485	1.2	2.634	1.843	3.455	6.574	3.424	2.834	1.016	0.993	0.305	0.508	0.7319	1.043
Dissolved copper	3	<9	<9	<9	<9	<9	<9	<9	<9	<9	5.58	<9	19.83	4.2	3	<3	3	<3	<3	7	<3	<3	<3	<3	<3	<3
Dissolved chromium	0.2	<2	<2	<2	6	<2	<2	<2	<2	<2	1.8	<2	1.017	4.6	<0.2	<0.2	<0.2	<0.2	<0.2	0.9	<0.2	<0.2	<0.2	0.2	<0.2	<0.2
Chromium VI	2	<5	<5	<5	8	<5	<5	<5	<5	<5	<30	<5		<20	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Chromium III	2	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30	<30		<20	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved nickel	0.2	<3	<3	<3	<3	<3	4	<3	<3	<3	2.12	<3	6.816	4.6	0.7	0.4	2.4	1.4	2.3	2.5	<0.2	1.1	0.7	1	<0.2	1.8
Dissolved arsenic	0.9	2.1	<1	<1	<1	2	1.3	2.7	5.3	8.3	7.7	1.5	7.069	1.3	<0.9	2	3.4	6.5	3.9	3.6	2.8	5.3	1.3	<0.9	<0.9	2.1
Dissolved lead	0.4	<6	<6	<6	<6	<6	<6	<6	<6	<6	0.187	<6	0.381	<1	1	0.7	1.2	0.9	<0.4	2.8	<0.4	0.8	2	<0.4	<0.4	<0.4
Total hardness as CaCO3	1	35.5	27.5	21	34.5	41.4	49.4	13.7	71.4	36.6	65.1	10.8	25	<15	21	21	68	31	84	100	22	57	33	41	12	102
Visible oil or grease	N/A	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-

Notes: pH values presented in pH units. Values in brackets are field pH measurements. Total Suspended Solids, Biochemical Oxygen Demand, Total hardness & Dissolved iron concentrations are presented in mg/L, all other parameters are in µg/L. # BOD over diluted, therefore result indicative only ^Δ Container with headspace

02/06/2016	04/07/2016	03/08/2016	06/09/2016	05/10/2016	03/11/2016	6 06/12/2016	18/01/2017	01/02/2017	20/03/2017	04/04/2017	09/05/2017	06/06/2017	06/07/2017	03/08/2017	05/09/2017	7 10/10/2017	14/11/2017	13/12/2017	10/01/2018	06/02/2018	07/03/2018	04/04/2018	03/05/2018	11/06/2018	09/07/2018	06/08/2018	05/09/2018	03/10/2018	8 06/11/2018
<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	19	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
<1	<1	2	2	2	1	1	<1	9	<1	2	1	<1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1	<1	2	<1	6	<1
7.21 (7.78)	7.04 (7.34)	6.51 (6.99)	6.5 (7.52)	7.76 (7.33)	7.81 (7.42)	6.55 (7.36)	6.85 (7.33)	6.57 (6.66)	6.14 (6.72)	7.15 (6.8)	8.8 (7.62)	6.55 (6.71)	6.49 (7.49)	6.28 (5.28)	6.42 (6.81) 8	6.05 (6.63)	7.33 (7.32)	6.9 (7.85)	6.87 (7.52)	7.67 (7.9)	7.87 (7.84)	6.92 (6.03)	7.61 (6.75)	7.85 (7.41)	6.26 (7.86)	6.22 (7.61)	6.12 (7.87)	7.4 (7.97)	6.75 (6.66)
< <u>5</u>	5	10	,	,	5	5	4	J	5	1	~>	J	5.0	NA.	0	7.3	6.1	2.9	6.6	8.5	2.4	4.7	7.4	6.4	5.1	6.8	5.5	4.5	6
< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.5	<0.5	< 0.01	<0.5	< 0.5	< 0.5	<0.5	<1	<1	< 0.5	< 0.01	< 0.01	< 0.5	< 0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
<0.03	<0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
3.229	1.876	3.405	3.162	8.689	7.586	3.364	0.6952	0.7231	0.7234	1.113	1.456	1.272	2.382	2.006	1.828	1.448	1.393	0.5909	0.7136	0.5669	0.4264	0.6562	1.166	2.54	3.09	3.451	3.915	3.377	1.273
<3	<3	<3	<3	4	6	<3	<3	<3	<3	<3	<3	<3	<3	<3	6	3	<3	<3	<3	<3	<3	<3	3	7	6	5	<3	<3	<3
<0.2	<0.2	<0.2	<0.2	0.5	<0.2	0.5	0.2	0.7	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.5	<0.2	<0.2	1	<0.2	0.3	<0.2	<0.2	<0.2
<2	<6	<6	<6	<6	<6	<6	<6	<6	<6	NA	<6	<6	NA	NA	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6
<2	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6
0.3	0.4	0.7	0.2	2.2	1.5	0.9	0.5	0.6	0.3	0.6	0.4	<0.2	<0.2	<0.2	0.9	1.1	<0.2	<0.2	0.5	0.2	0.5	<0.2	1.7	1.3	0.7	0.3	<0.2	0.3	0.7
2.9	4	<0.9	1.1	7.2	10.5	5.4	0.9	<0.9	<0.9	<0.9	3.6	2.1	1.7	<0.9	1.7	<0.9	2	1	<0.9	<0.9	<0.9	2.1	<0.9	1.7	3.1	1.8	2.8	<0.9	<0.9
<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	0.9	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
33	16	16	14	27	31	27	18	13	10	127	38	10	17	8	14	11	13	9	10	22	14	9	17	27	33	23	24	25	13
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

02/06/2016	04/07/2016	6 03/08/2016	06/09/2016	05/10/2016	03/11/2016	06/12/2016	5 18/01/2017	01/02/2017	20/03/2017	04/04/2017	09/05/2017	06/06/2017	06/07/2017	03/08/2017	05/09/2017	10/10/2017	14/11/2017	13/12/2017	7 10/01/2018	06/02/2018	07/03/2018	04/04/2018	03/05/2018	11/06/2018	09/07/2018	06/08/2018	05/09/2018	03/10/2018	06/11/2018
<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	25	<10	<10	<10	<10	15	<10	<10	14	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1	1	2	1	2	<1	1	<1	<1	<1	2	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1	<1	<1	<1	<1	6	<1
7.06 (7.47)	6.74 (7.20)	6.95 (7.12)	7.02 (7.13)	7.52 (7.12)	7.62 (6.97)	7.45 (6.91)	7.32 (6.74)	7.48 (6.71)	6.93 (7.06)	7.41 (7.16)	7.76 (7.39)	7.14 (7.09)	7.37 (7.49)	6.41 (6.9)	7.36 (6.63)	7.19 (6.29)	6.37 (7.01)	7.3	7.91 (7.33)	7.66 (7.79)	7.91 (8.16)	7.3 (6.95)	7.68 (7.3)	7.99 (7.91)	7.98 (8.45)	7.71 (7.82)	7.47 (7.95)	7.91 (7.77)	7.66 (7.07)
5	5	6	6	7	7	6	8	10	5	9	3	6	4.6	NA	10														
																7.4	6.3	3.1	15.8	16.7	5.3	4.2	9.6	9.3	2.9	7.6	19	8.7	22
< 0.01	<0.01	< 0.01	<0.01	<0.01	< 0.01	<0.5	<0.5	< 0.01	<0.5	<0.5	<0.5	<0.5	<1	<1	<0.5	< 0.01	< 0.01	<0.5	<05	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
< 0.03	<0.03	<0.03	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	< 0.03	<0.03	< 0.03	<0.03	< 0.03
1.172	1.901	3.003	3.11	3.905	3.272	1.987	0.5208	0.7368	0.7424	0.904	0.5302	1.058	2.146	1.896	1.281	1.422	1.352	0.5759	0.6817	0.3665	0.3316	0.6125	1.03	1.102	0.5419	1.95	2.043	2.194	1.043
<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	4	3	<3	<3	<3	<3	<3	<3	4	3	<3	4	<3	<3	<3
<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.4	0.3	1.3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.3	<0.2	0.5	1.7	<0.2	<0.2	<0.2	<0.2	<0.2
<2	<6	<6	<6	<6	<6	<6	<6	<6	<6	NA	<6	<6	NA	NA	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6
<2	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6
3	<0.2	1	0.4	3.7	3.9	2.2	1.6	1.2	<0.2	0.9	1.4	0.4	<0.2	<0.2	1.9	0.9	0.4	<0.2	1.1	2.4	1.5	0.7	0.9	1.6	2.2	1.7	1.5	1.7	1.4
1.6	4.2	1.4	3.8	1.3	7.4	4.2	<0.9	2.4	<0.9	2.9	<0.9	1.5	6.6	1.7	1.7	2.9	<0.9	< 0.9	1.6	<0.9	1.7	<0.9	2.3	<0.9	<0.9	<0.9	3.4	1.2	<0.9
<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
157	26	35	35	110	124	93	71	23	12	49	128	41	39	16	56	19	16	15	40	85	55	20	31	117	146	85	97	77	45
	_	-	_	_	-	_	_	_	-	_	_	_	_	_	_		-	-	_	-	_	_	-	-	-	_	_	_	-

DCS4 - Owenkillew River upstream

Parameter	Detection limit (typical)	27/11/2014	16/12/2014	18/12/2014	14/01/201	5 04/02/2015	11/02/2015	26/03/2015	Duplicate	23/04/2015	Duplicate	21/05/2015	02/06/2015	07/07/201	5 28/07/2015	30/07/201	5 04/08/2015	Duplicate	02/09/2015	01/10/2015	22/10/201	5 05/11/2019	5 09/12/2015	06/01/2015	03/02/2015	02/03/2016	06/04/2016
Total Suspended Solids	10	<3	<3	6	<3	<3	<3	42	43	<3	<2	6	9	13	9	<10	12	3	<10	<10	<10	<10	11	<10	<10	<10	10
Biochemical Oxygen Demand	1	<1	<1	<1	1.47#	1.29#	<1	2.57#	8	<1	<2	1.95#	1.28	2.47	1.95 ^{#∆}	1	1	<2	2	1	2	2	1	1	1	2	2
рН	-	6.84	7.07	6.68	6.77	6.7 (5.92)	7.06 (8.15)	6.9 (8.54)	7.7	7.93	7.2	7.23	6.79	(7.36)	6.1 (6.50)	6.68	7.28 (9.90)	7.4	7.79	6.45	7.46	7.65 (7.14)	6.83 (6.65)	7.1 (6.16)	7.08 (6.24)	7.19 (6.29)	7.2 (7.19)
Total zinc	3	<18	<18	<18	<18	<18	<18	<18	9.716	<18	< 0.63	<18	<18	6.7	9.6	6	6	10.31	4	3	<3	3	5	4	10	6	4
Dissolved zinc	1.5									_																	
Dissolved mercury	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	< 0.03	<0.1	<0.1	<0.5	<0.5	0.04	< 0.01	<0.2	< 0.01	0.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dissolved cadmium	0.03	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	< 0.09	<0.6	< 0.01	<0.6	<0.6	< 0.08	0.6	< 0.03	< 0.03	<0.09	0.05	0.14	< 0.03	0.08	0.2	0.15	< 0.03	< 0.03	< 0.03
Dissolved iron	0.0047	1.05	0.5	0.45	0.43	0.4	0.36	0.25	0.2771	0.56	0.806	0.53	0.36	0.56	0.78	1.146	2.459	1.482	1.806	1.503	0.9033	1.269	0.7594	0.7784	0.242	0.6605	0.6255
Dissolved copper	3	<9	<9	<9	<9	<9	<9	<9	20.09	<9	0.445	<9	<9	1.1	3.2	<3	<3	11.24	<3	<3	<3	<3	<3	<3	<3	<3	<3
Dissolved chromium	0.2	<2	<2	<2	<2	<2	<2	<2	<0.68	<2	< 0.58	<2	<2	<1	5.8	<0.2	<0.2	<0.68	1	0.6	<0.2	<0.2	<0.2	0.3	<0.2	0.3	<0.2
Chromium VI	2	<5	<5	<5	<5	<5	<5	<5		<5		<5	<5	<20	<20	<2	<2		<2	<2	<2	<2	<2	<2	<2	<2	<2
Chromium III	2	<30	<30	<30	<30	<30	<30	<30		<30		<30	<30	<20	<20	<2	<2		<2	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved nickel	0.2	<3	57	<3	<3	<3	<3	4	6.45	<3	0.569	<3	<3	<1	6.3	0.4	0.7	1.513	1.3	0.6	0.4	0.7	<0.2	1.6	0.8	<0.2	<0.2
Dissolved arsenic	0.9	<1	<1	<1	<1	<1	<1	4.8	5.032	1.5	1.399	1.4	1.1	<1	1.2	2.4	2.4	3.454	2.2	2.8	1.6	<0.9	2.7	<0.9	<0.9	<0.9	<0.9
Dissolved lead	0.4	<6	<6	<6	<6	<6	<6	<6	0.543	<6	< 0.02	<6	<6	<1	<1	2.2	0.5	0.573	4	<0.4	<0.4	1.9	<0.4	<0.4	1.2	<0.4	<0.4
Total hardness as CaCO3	1	28.8	24.3	19.1	25.1	31	27.9	17.6	21	37.5	38	23.7	16.2	30	<15	25	23	22	32	41	29	38	16	15	21	17	20
Visible oil or grease	N/A	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-

Notes:

pH values presented in pH units. Values in brackets are field pH measurements. Total Suspended Solids, Biochemical Oxygen Demand, Total hardness & Dissolved iron concentrations are presented in mg/L, all other parameters are in µg/L. # BOD over diluted, therefore result indicative only ^ Container with headspace

DCS5 - Owenkillew River downstream

Parameter	Detection limit (typical)	27/11/2014	16/12/2014	18/12/2014	14/01/201	5 04/02/2015	11/02/2015	23/03/2015	26/03/2015	23/04/2015	21/05/2015	Duplicate	02/06/201	6 07/07/2015	28/07/2015	30/07/201	6 04/08/2015	02/09/2015	01/10/2015	22/10/201	5 05/11/2015	6 09/12/2015	6 06/01/2015	03/02/2015	02/03/2016	06/04/2016	04/05/201
Total Suspended Solids	10	<3	<3	8	<3	<3	<3	5	35	<3	<3	2	<3	14	12	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Biochemical Oxygen Demand	1	<1	<1	<1	1.61#	1.37#	<1	<2	2.59#	<1	1.17#	<2	1.1*	2.01#	2.04 ^{#∆}	1	2	1	1	<1	1	2	1	1	2	2	2
pН	-	7.04	7.15	6.61	6.76	6.66 (5.54)	7.03 (7.45)	7.5	6.9 (6.77)	7.71	6.94	7.5	6.88	7.23 (7.41)	6.2 (6.96)	6.88	6.51 (7.41)	6.51	7.91	7.12	7.49 (7.11)	7.55 (6.66)	7.31 (6.49)	6.91 (6.22)	7.07 (6.32)	7.2 (7.23)	7.09 (7.7)
Total zinc	3	<18	<18	<18	<18	<18	<18	11.69	20	<18	<18	4.396	<18	8.8	11	7	5	5	<3	4	4	5	5	9	5	4	<3
Dissolved zinc	1.5																										
Dissolved mercury	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	< 0.1	<0.1	<0.1	<0.2	<0.1	<0.5	<0.5	0.05	0.03	0.01	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5
Dissolved cadmium	0.03	<0.6	<0.6	<0.6	<0.6	<0.6	<0.6	< 0.09	<0.6	<0.6	<0.6	< 0.09	<0.6	< 0.08	0.5	< 0.03	< 0.03	0.19	< 0.03	0.2	0.14	0.11	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Dissolved iron	0.0047	0.98	0.5	0.42	0.43	0.37	0.39	0.6379	0.25	0.58	0.56	0.5218	0.38	0.63	0.83	1.241	2.749	1.835	1.938	1.312	1.37	0.7792	0.7899	0.2365	0.6817	0.6246	0.646
Dissolved copper	3	<9	<9	<9	<9	<9	<9	0.322	<9	<9	<9	2.819	<9	<1	3.2	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
Dissolved chromium	0.2	<2	<2	<2	<2	<2	<2	<0.68	<2	<2	<2	<0.68	<2	<1	6.5	<0.2	0.3	1	<0.2	<0.2	0.3	<0.2	0.5	<0.2	0.8	<0.2	<0.2
Chromium VI	2	<5	<5	<5	8	<5	<5		<5	<5	<5		<5	<20	<20	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Chromium III	2	<30	<30	<30	<30	<30	<30		<30	<30	<30		<30	<20	<20	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Dissolved nickel	0.2	<3	<3	<3	<3	<3	<3	0.649	<3	<3	<3	0.997	<3	<1	7.1	0.5	0.8	1.4	0.5	0.6	0.9	0.5	1.1	0.9	<0.2	<0.2	<0.2
Dissolved arsenic	0.9	<1	<1	<1	<1	1.2	<1	1.158	5	1.5	1.3	1.183	1.1	<1	1.2	2.4	5.4	<0.9	1.8	1.7	<0.9	<0.9	<0.9	<0.9	<0.9	1	<0.9
Dissolved lead	0.4	<6	<6	<6	<6	<6	<6	<0.173	<6	<6	<6	<0.173	<6	<1	<1	2.4	<0.4	2.2	<0.4	2.1	<0.4	<0.4	< 0.4	0.6	0.8	<0.4	<0.4
Total hardness as CaCO3	1	29.3	23.8	18.2	25.3	31	27.1	35	17.2	41.6	23	25	16.3	31	<15	27	21	36	43	30	41	16	18	22	18	21	29
Visible oil or grease	N/A	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes: pH values presented in pH units. Values in brackets are field pH measurements. Total Suspended Solids, Biochemical Oxygen Demand, Total hardness & Dissolved iron concentrations are presented in mg/L, all other parameters are in µg/L. # BOD over diluted, therefore result indicative only

04/05/2016	02/06/2016	04/07/2016	03/08/2016	06/09/2016	05/10/2016	6 03/11/2016	06/12/2016	18/01/2017	01/02/2017	20/03/2017	04/04/2017	09/05/2017	06/06/2017	06/07/2017	03/08/2017	05/09/2017	10/10/2017	14/11/2017	13/12/2017	10/01/2018	06/02/2018	07/03/2018	04/04/2018	03/05/2018	11/06/2018	09/07/2018	06/08/2018	05/09/2018	3 03/10/2018	06/11/2018
<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	10	<10	<10	<10	10	<10	<10	<10	<10	25	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1	1	<1	1	1	<1	1	2	1	1	<1	2	1	1	2	<1	<1	<1	<1	<1	<1	<1	1	<1	<1	3	<1	<1	<1	3	<1
7.08 (7.58)	7.23 (7.89)	6.74 (7.27)	7.08 (7.25)	7.07 (7.25)	7.61 (7.07)	7.73 (7.21)	7.59 (7.20)	7.39 (6.52)	7.38 (6.71)	6.69 (7.06)	7.34 (7.19)	7.3 (7.59)	7.22 (6.84)	7.14 (6.94)	6.89 (6.33)	6.35 (6.5)	7.49 (6.51)	7.55 (7.01)	7.37 (6.75)	6.14 (6.77)	6.36 (7.58)	7.93 (7.6)	7.69 (7.12)	6.1 (6.97)	6.1 (7.57)	6.14 (7.73)	7.74 (7.6)	6.54 (7.54)	6.22 (7.6)	6.93 (6.59)
<3	<3	4	25	5	8	<3	<3	4	3.9	4	3	<1.5	4	3.6	7.3	3.6														
																	5	2.7	2.2	7.3	<1.5	2.7	4.2	4.3	4.6	1.5	<1.5	3.3	3.4	7.3
<0.5	< 0.01	0.39	< 0.01	<0.01	< 0.01	< 0.01	<0.5	<0.5	< 0.01	<0.5	<0.5	<0.5	<0.5	<1	<1	<0.5	< 0.01	< 0.01	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
0.6549	0.8637	0.97	1.596	1.553	1.797	1.34	1.051	0.6403	0.7023	0.6057	0.8926	0.533	0.8258	1.041	1.359	1.38	1.316	1.008	0.504	0.601	0.5692	0.4357	0.5564	0.7309	1.175	0.617	0.9438	1.522	0.8753	0.9387
<3	<3	<3	3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.4	0.2	<0.2	<0.2	<0.2	0.3	<0.2	0.3	<0.2	<0.2	0.3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.8	0.7	0.5	1.2	<0.2
<2	<2	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	NA	NA	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6
<2	<2	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6
<0.2	<0.2	<0.2	0.6	0.6	0.4	1.3	1	<0.2	0.7	<0.2	0.5	0.6	<0.2	0.9	<0.2	1.1	1.4	0.7	<0.2	<0.2	<0.2	<0.2	<0.2	0.6	0.6	0.2	1.7	1.3	1.8	0.8
<0.9	<0.9	2.5	<0.9	4.7	1.6	2.9	3.4	<0.9	<0.9	<0.9	<0.9	<0.9	1.2	6.6	1.6	<0.9	1.5	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	2.3	<0.9	3.9	2	<0.9	<0.9	<0.9
<0.4	<0.4	<0.4	<0.4	<0.4	< 0.4	<0.4	1.5	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
26	43	25	45	26	37	43	39	28	19	16	27	41	18	25	17	22	19	20	15	13	27	19	17	23	33	45	36	37	42	21
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-

/06/2016	04/07/2016	03/08/2016	06/09/2016	05/10/2016	03/11/2016	06/12/2016	18/01/2017	01/02/2017	20/03/2017	04/04/2017	09/05/2017	06/06/2017	06/07/2017	03/08/2017	05/09/2017	10/10/2017	14/11/2017	13/12/2017	10/01/2018	06/02/2018	07/03/2018	04/04/2018	03/05/2018	11/06/2018	09/07/2018	06/08/2018	05/09/2018	3 03/10/2018	06/11/2018
<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	14	<10	<10	<10	<10	23	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
1	1	1	1	<1	<1	2	2	<1	<1	1	1	1	2	<1	<1	<1	<1	<1	<1	<1	2	<1	<1	1	<1	<1	2	3	2
64 (7.87)	6.94 (7.11)	7.08 (7.29)	7.1 (7.20)	7.63 (6.90)	7.97 (7.17)	6.96 (7.18)	7.3 (6.59)	6.19 (6.74)	6.64 (7.04)	6.72 (7.32)	6.54 (7.60)	6.33 (6.95)	6.49 (6.9)	6.71 (6.37)	6.52 (6.59)	6.33 (6.55)	6.58 (7.04)	4.24(6.9)	6.15 (6.83)	6.38 (7.58)	6.27 (7.48)	6.35 (6.87)	6.16 (6.76)	6.18 (7.57)	6.2 (7.62)	6.28 (7.48)	6.42 (7.36)	6.19 (7.37)	6.97 (6.6)
<3	5	4	5	4	<3	<3	3	4.4	5	3.7	<1.5	6	5.2	8.9	3.6												`		
																5.3	2.9	2.7	5.7	4	2.9	8.5	4.2	3.2	2.5	3.2	3.1	5.4	38.9
< 0.01	<0.01	<0.01	0.06	< 0.01	< 0.01	<0.5	<0.5	< 0.01	<0.5	<0.5	<0.5	<0.5	<1	<1	<0.5	< 0.01	< 0.01	<0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
<0.03	<0.03	<0.03	<0.03	< 0.03	<0.03	<0.03	< 0.03	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	< 0.03	< 0.03	<0.03	<0.03	< 0.03	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	<0.03
0.8452	1.166	1.868	1.675	1.824	1.374	1.063	0.6517	0.6844	0.6228	0.8342	0.505	0.8812	1.069	1.381	1.308	1.321	1.02	0.4768	0.6217	0.552	0.431	0.5781	0.7646	1.176	0.6968	0.9051	1.469	0.9078	0.9421
<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3	<3
<0.2	0.6	<0.2	<0.2	0.3	0.5	<0.2	0.7	<0.2	0.3	<0.2	<0.2	0.4	0.8	<0.2	<0.2	0.5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.3	<0.2	0.6	<0.2
<2	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	NA	NA	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6
<2	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6	<6
<0.2	0.9	1.2	0.9	1.5	1	0.8	0.4	<0.2	<0.2	<0.2	0.5	0.8	<0.2	<0.2	1	1.6	0.2	<0.2	<0.2	<0.2	0.5	0.8	1.3	1.1	<0.2	1.6	1.2	<0.2	1.4
1.9	<0.9	<0.9	2.3	3.8	3.7	2.3	<0.9	<0.9	<0.9	<0.9	1.6	3	<0.9	2.1	2.2	2.8	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	1.1	<0.9	1.4	1.8	<0.9	<0.9	<0.9
<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
47	26	38	29	43	45	45	30	21	18	28	48	20	26	17	23	19	21	15	14	32	23	18	23	35	48	38	38	44	22
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Appendix B

Laboratory Results

Compiled By:

BSc Senior Project Manager

Client Name: Reference: Location: Contact:

Dalradian Gold Ltd DCS CURRAGHINALT

Report : Liquid

 $\label{eq:Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle H=H_2SO_4, Z=ZnAc, N=NaOH, HN=HNO_3$

Job No.	18/14156	18/14156	18/14156	18/14151	18/14151	18/14151	18/14156				
Sample No.	1-5	6-10	11-15	1-8	9-16	17-24	16-20				
Sample ID	DCS1	DCS2	DCS3	DCS4	DCS5	DCS6	DCS7				
Depth									Please se	e attached n	otes for all
COC No / misc										ations and a	
Containers	HNUF NB P BOD G	HNUF NB P BOD G	HNUF NB P BOD G	V H HNUF N NB P BOD G	V H HNUF N NB P BOD G	V H HNUF N NB P BOD G	HNUF NB P BOD G				
Sample Date	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018	05/09/2018				
Sample Type											
Batch Number	1	1	1	1	1	1	1		 LOD/LOR	Units	Method No.
Date of Receipt	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018	06/09/2018				110.
Dissolved Arsenic [#]	2.8	2.0	3.4	<0.9	<0.9	<0.9	<0.9		<0.9	ug/l	TM30/PM14
Dissolved Cadmium [#]	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		<0.03	ug/l	TM30/PM14
Total Dissolved Chromium [#]	<0.2	<0.2	<0.2	0.5	<0.2	2.2	<0.2		<0.2	ug/l	TM30/PM14
Dissolved Copper [#]	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM30/PM14
Total Dissolved Iron #	3.9150	<0.0047	2.0430	1.5220	1.4690	<0.0047	<0.0047		<0.0047	mg/l	TM30/PM14
Dissolved Lead [#]	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4		<0.4	ug/l	TM30/PM14
Dissolved Mercury [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	ug/l	TM30/PM14
Dissolved Nickel [#]	<0.2	2.2	1.5	1.3	1.2	<0.2	<0.2		<0.2	ug/l	TM30/PM14
Dissolved Zinc [#]	5.5	3.4	19.0	3.3	3.1	<1.5	<1.5		<1.5	ug/l	TM30/PM14
Total Hardness Dissolved (as CaCO3)	24	182	97	37	38	<1	186		<1	mg/l	TM30/PM14
Hexavalent Chromium #	<6	<6	<6	<6	<6	<6	<6		<6	ug/l	TM38/PM0
Total Dissolved Chromium III	<6	<6	<6	<6	<6	<6	<6		<6	ug/l	TM0/PM0
BOD (Settled) [#]	<1	<1	<1	<1	2	<1	<1		<1	mg/l	TM58/PM0
pH [#]	6.12	7.25	7.47	6.54	6.42	6.03	8.34		<0.01	pH units	TM73/PM0
Total Suspended Solids #	<10	<10	<10	<10	<10	<10	<10		<10	mg/l	TM37/PM0

Client Name:Dalradian Gold LtdReference:DCSLocation:CURRAGHINALT

Contact:

Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
					No deviating sample report results for jobs 18/14151,18/14156	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

Job No.: 18/14151 18/14156

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

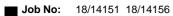
BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

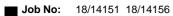
NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.


REPORTS FROM THE LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.


Please include all sections of this report if it is reproduced All solid results are expressed on a dry weight basis unless stated otherwise.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an an an an approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
Ν	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x2 Dilution
AB	x4 Dilution

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
тмо	Not available	PM0	No preparation is required.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes			
ТМЗО	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.				
ТМЗО	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM37	Modified methods USEPA 160.2, EN872:2005 and SMWW 2540D. Gravimetric determination of Total Suspended Solids. Sample is filtered through a 1.5um pore size glass fibre filter and the resulting residue is dried and weighed.	PM0	No preparation is required.	Yes			
ТМЗ8	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+), 7196A (Hex Cr)	PM0	No preparation is required.				
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+), 7196A (Hex Cr)	PM0	No preparation is required.	Yes			
TM57	Modified US EPA Method 410.4. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM58	APHA Standard Methods for the extraction of water and waste water (SMEWW) 5210B. Measurement of Biochemical Oxygen Demand. When cBOD (Carbonaceous BOD) is requested a nitrification inhibitor is added which prevents the oxidation of reduced forms of nitrogen, such as ammonia, nitrite and organic nitrogen which exert a nitrogenous demand.	PM0	No preparation is required.	Yes			

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060, APHA Standard Methods for Examination of Water and Wastewater 5310B, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.	Yes			
TM61	Modified US EPA methods 245.7 and 200.7. Determination of Mercury by Cold Vapour Atomic Fluorescence.	PM0	No preparation is required.				
TM61	Modified US EPA methods 245.7 and 200.7. Determination of Mercury by Cold Vapour Atomic Fluorescence.	PM0	No preparation is required.	Yes			
ТМ73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM89	Modified USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM0	No preparation is required.				
TM170	Determination of Trace Metal elements by ICP-MS (Inductively Coupled Plasma - Mass Spectrometry) modified USEPA 200.8/6020A and BS EN ISO 17294-2 2016	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.				

Compiled By:

BSc Senior Project Manager

Client Name: Reference: Location: Contact:

Dalradian Gold Ltd DCS Curraghinalt

Report : Liquid

 $\label{eq:liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle H=H_2SO_4, Z=ZnAc, N=NaOH, HN=HN0_3$

Job No.	18/15926	18/15926	18/15926	18/15922	18/15922	18/15922	18/15926					
Sample No.	1-5	6-10	11-15	1-8	9-16	17-24	16-20					
Sample ID	DCS1	DCS2	DCS3	DCS4	DCS5	DCS6	DCS7					
Depth										Please se	e attached n	otes for all
COC No / misc											ations and a	
Containers	HN NB P BOD G	HN NB P BOD G	HN NB P BOD G	V H HN N NB P BOD G	V H HN N NB P BOD G	V H HN N NB P BOD G	HN NB P BOD G					
Sample Date	03/10/2018	03/10/2018	03/10/2018	03/10/2018	03/10/2018	03/10/2018	03/10/2018					
Sample Type	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water					
Batch Number	1	1	1	1	1	1	1					Method
Date of Receipt	04/10/2018	04/10/2018	04/10/2018	04/10/2018	04/10/2018	04/10/2018	04/10/2018			LOD/LOR	Units	No.
D'	-0.0	.0.0	10	-0.0	.0.0	-0.0	-0.0			.0.0		TM20/DM4 1
Dissolved Arsenic [#]	<0.9	<0.9	1.2	<0.9	<0.9	<0.9	<0.9			<0.9	ug/l	TM30/PM14
Dissolved Cadmium #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03			<0.03	ug/l	TM30/PM14
Total Dissolved Chromium #	<0.2	0.4	<0.2	1.2	0.6	<0.2	<0.2			<0.2	ug/l	TM30/PM14
Dissolved Copper [#]	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM30/PM14
Total Dissolved Iron #	3.3770	<0.0047	2.1940	0.8753	0.9078	<0.0047	<0.0047			<0.0047	mg/l	TM30/PM14
Dissolved Lead [#]	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4			<0.4	ug/l	TM30/PM14
Dissolved Mercury [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM30/PM14
Dissolved Nickel [#]	0.3	3.1	1.7	1.8	<0.2	<0.2	3.2			<0.2	ug/l	TM30/PM14
Dissolved Zinc [#]	4.5 25	4.8	8.7	3.4 42	5.4 44	<1.5	5.1			<1.5	ug/l	TM30/PM14
Total Hardness Dissolved (as CaCO3)	20	186	77	42	44	<1	188			<1	mg/l	TM30/PM14
Hexavalent Chromium #	<6	<6	<6	<6	<6	<6	<6			<6	ug/l	TM38/PM0
Total Dissolved Chromium III	<6	<6	<6	<6	<6	<6	<6			<6	ug/l	TM0/PM0
BOD (Settled) [#]	6	2	6	3	3	3	2			<1	mg/l	TM58/PM0
pH [#]	7.40	8.40	7.91	6.22	6.19	5.90	8.34			<0.01	pH units	TM73/PM0
Total Suspended Solids #	<10	<10	<10	<10	<10	<10	<10			<10	mg/l	TM37/PM0
											-	
				I			1	1	1	 1		1

Client Name:Dalradian Gold LtdReference:DCS

Location: Curraghinalt

Contact:

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
					No deviating sample report results for jobs 18/15922,18/15926	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 18/15926 18/15922

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

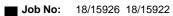
Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

REPORTS FROM THE LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Please include all sections of this report if it is reproduced All solid results are expressed on a dry weight basis unless stated otherwise.


ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an approved laboratory.
AD	Samples are dried at 35°C ±5°C
CO	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

Job No: 18/15926 18/15922

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
ТМО	Not available	PM0	No preparation is required.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes			
ТМЗО	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM37	Modified methods USEPA 160.2, EN872:2005 and SMWW 2540D. Gravimetric determination of Total Suspended Solids. Sample is filtered through a 1.5um pore size glass fibre filter and the resulting residue is dried and weighed.	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM0	No preparation is required.				
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM0	No preparation is required.	Yes			
TM57	Modified US EPA Method 410.4. Comparable with ISO 15705:2002. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM58	APHA Standard Methods for the extraction of water and waste water (SMEWW) 5210B. Comparible with ISO 5815-1989. Measurement of Biochemical Oxygen Demand. When cBOD (Carbonaceous BOD) is requested a nitrification inhibitor is added which prevents the oxidation of reduced forms of nitrogen, such as ammonia, nitrite and organic nitrogen which exert a nitrogenous demand.	PM0	No preparation is required.	Yes			

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060, APHA Standard Methods for Examination of Water and Wastewater 5310B, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.	Yes			
TM61	Modified US EPA methods 245.7 and 200.7. Determination of Mercury by Cold Vapour Atomic Fluorescence.	PM0	No preparation is required.				
TM61	Modified US EPA methods 245.7 and 200.7. Determination of Mercury by Cold Vapour Atomic Fluorescence.	PM0	No preparation is required.	Yes			
ТМ73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM89	Modified USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM0	No preparation is required.				
TM170	Determination of Trace Metal elements by ICP-MS (Inductively Coupled Plasma - Mass Spectrometry) modified USEPA 200.8/6020A and BS EN ISO 17294-2 2016	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.				

Compiled By:

BSc Senior Project Manager

Client Name: Reference: Location: Contact:

Dalradian Gold Ltd DCS Curraghinalt

Report : Liquid

 $\label{eq:Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle H=H_2SO_4, Z=ZnAc, N=NaOH, HN=HN0_3$

Sample No.	8/17913 1-5 DCS1	6-10 DCS2	11-15 DCS3	1-8 DCS4	9-16 DCS5	17-24	16-20					
Sample ID Depth	DCS1						10-20					
Depth		DCS2	DCS3	DCS4	DCS5							
						DCS6	DCS7					
COC No / misc										Please see attached notes for all abbreviations and acronyms		
Containers HN N	NB P BOD G	HN NB P BOD G	HN NB P BOD G	V H HN N NB P BOD G	V H HN N NB P BOD G	V H HN N NB P BOD G	HN NB P BOD G					
Sample Date 06/	6/11/2018	06/11/2018	06/11/2018	06/11/2018	06/11/2018	06/11/2018	06/11/2018					
Sample Type Surfa	rface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water	Surface Water					
Batch Number	1	1	1	1	1	1	1			LOD/LOR	Units	Method
Date of Receipt 07/	7/11/2018	07/11/2018	07/11/2018	07/11/2018	07/11/2018	07/11/2018	07/11/2018			LOD/LOR	Units	No.
Dissolved Arsenic [#]	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9	<0.9			<0.9	ug/l	TM30/PM14
Dissolved Cadmium#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03			<0.03	ug/l	TM30/PM14
Total Dissolved Chromium#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			<0.2	ug/l	TM30/PM14
Dissolved Copper [#]	<3	<3	<3	<3	<3	<3	<3			<3	ug/l	TM30/PM14
Total Dissolved Iron # 1	1.2730	<0.0047	1.0430	0.9387	0.9421	<0.0047	<0.0047			<0.0047	mg/l	TM30/PM14
Dissolved Lead [#]	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4			<0.4	ug/l	TM30/PM14
Dissolved Mercury [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5	ug/l	TM30/PM14
Dissolved Nickel [#]	0.7	4.1	1.4	0.8	1.4	<0.2	3.4			<0.2	ug/l	TM30/PM14
Dissolved Zinc [#]	6.0	11.2	22.0	7.3	38.9	<1.5	11.9			<1.5	ug/l	TM30/PM14
Total Hardness Dissolved (as CaCO3)	13	179	45	21	22	<1	176			<1	mg/l	TM30/PM14
Hexavalent Chromium #	<6	<6	<6	<6	<6	<6	<6			<6	ug/l	TM38/PM0
Total Dissolved Chromium III	<6	<6	<6	<6	<6	<6	<6			<6	ug/l	TM0/PM0
BOD (Settled) #	<1	<1	<1	<1	2	<1	<1			<1	mg/l	TM58/PM0
рН#	6.75	8.30	7.66	6.93	6.97	6.27	8.30			<0.01	pH units	TM73/PM0
Total Suspended Solids #	<10	<10	<10	<10	<10	<10	<10			<10	mg/l	TM37/PM0

Client Name:Dalradian Gold LtdReference:DCS

Location: Curraghinalt

Contact:

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason			
	No deviating sample report results for jobs 18/17913,18/17917								

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 18/17917 18/17913

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

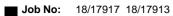
BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

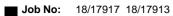
NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.


REPORTS FROM THE LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.


Please include all sections of this report if it is reproduced All solid results are expressed on a dry weight basis unless stated otherwise.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa.
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
++	Result outside calibration range, results should be considered as indicative only and are not accredited.
*	Analysis subcontracted to an approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
тмо	Not available	PM0	No preparation is required.				
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM20	Modified BS 1377-3: 1990/USEPA 160.3 Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes			
ТМ30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.				
TM30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM37	Modified methods USEPA 160.2, EN872:2005 and SMWW 2540D. Gravimetric determination of Total Suspended Solids. Sample is filtered through a 1.5um pore size glass fibre filter and the resulting residue is dried and weighed.	PM0	No preparation is required.	Yes			
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM0	No preparation is required.				
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods 325.2 (Chloride), 375.4 (Sulphate), 365.2 (o-Phosphate), 353.1 (TON), 354.1 (Nitrite), 350.1 (NH4+) comparable to BS ISO 15923-1, 7196A (Hex Cr)	PM0	No preparation is required.	Yes			
TM57	Modified US EPA Method 410.4. Comparable with ISO 15705:2002. Chemical Oxygen Demand is determined by hot digestion with Potassium Dichromate and measured spectrophotometerically.	PM0	No preparation is required.	Yes			
TM58	APHA Standard Methods for the extraction of water and waste water (SMEWW) 5210B. Comparible with ISO 5815-1989. Measurement of Biochemical Oxygen Demand. When cBOD (Carbonaceous BOD) is requested a nitrification inhibitor is added which prevents the oxidation of reduced forms of nitrogen, such as ammonia, nitrite and organic nitrogen which exert a nitrogenous demand.	PM0	No preparation is required.	Yes			

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060, APHA Standard Methods for Examination of Water and Wastewater 5310B, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.	Yes			
TM61	Modified US EPA methods 245.7 and 200.7. Determination of Mercury by Cold Vapour Atomic Fluorescence.	PM0	No preparation is required.				
TM61	Modified US EPA methods 245.7 and 200.7. Determination of Mercury by Cold Vapour Atomic Fluorescence.	PM0	No preparation is required.	Yes			
TM73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM75	Modified US EPA method 310.1. Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			
TM76	Modified US EPA method 120.1. Determination of Specific Conductance by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM89	Modified USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM0	No preparation is required.				
TM170	Determination of Trace Metal elements by ICP-MS (Inductively Coupled Plasma - Mass Spectrometry) modified USEPA 200.8/6020A and BS EN ISO 17294-2 2016	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.	Yes			
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 340.2	PM0	No preparation is required.				

Appendix C

YSI Professional Series Probe Calibration Certification

OUTWARDS CHECKLIST

YSIPRO Sales Checklist and Calibration

YSI & Cable Serial Numbers: 17-LIOI825 / 17-LIOO306

5			
Reading	Target	Acceptable	Pass
16.4	Ref: 16-5	± 1°c	~
-1.9	0.0	0 ± 50	~
169.0	177	177 ± 50	1
170.9	177	162 - 180	\checkmark
4.9	5	4.6 - 5.4	1
5.0	0.0	±50.0	\checkmark
Pass or fail c	letermined	by the meter	~
	16.4 -1.9 16.0 170.9 4.9 5.0	16.4 Ref: 16.5 -1.9 0.0 16.0 177 16.0 177 16.0 177 16.0 177 16.0 177 16.0 177 16.0 177 16.0 177 16.0 177 16.0 177 170.0 100	16.4 Ref: 16.5 $\pm 1 \circ c$ -1.9 0.0 0 ± 50 16.0 177 177 ± 50 170.9 177 $162 - 180$ 4.9 5 $4.6 - 5.4$

*Calibrated to manufacturers standards

All parameters were within acceptable range on the day of despatch; however we do recommend that the instrument is calibrated daily to ensure accurate readings.

Checklist

0				
Co	m	m	Or	DTC.
$ \cup$				115

\square	YSI PRO meter & Hand strap		<i>n</i>
\square	Quatro Cable Assy		Magazina da California
	Probe Guard / Sleeve		
4	Calibration Cup		
LA	Manual/Data Manager CD		
	Quick Start Guide		
\mathbf{X}	Hard Case		MA
×	Flow Cell (including 2 o-rings)		NA
X	2 x Small & Large Flow Cell Nipp		NIA
LY.	DO Membrane and Electrolyte	kit	
\square	Warranty Sticker Intact		
\square	Maintenance Cleaning Kit)	
\checkmark	Cable Management Kit		1
Signe	ed:	Date: 12/12/17	
Nam	e:	Cross checked co	ontents initials:
	是其他生产性的。但是可以认为的生产的利用,但是由于是有些的。		
R045V6_1	12/10/2017_JO		and the second